To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorith...To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorithm and wavelet packet was proposed. First, according to the maximum inner product between the current signal and the cosine basis functions, this method could precisely estimate the waveform parameters of the fundamental component using the powerful global search capability of the BBPSO, which can eliminate the fundamental component and not affect other harmonic components. Then, the harmonic components of residual current signal were decomposed to a series of frequency bands by wavelet packet to extract the interturn circuit fault features of the induction motor. Finally, the results of simulation and laboratory tests demonstrated the effectiveness of the proposed method.展开更多
Inter-turn short circuit of field windings is a common electrical fault of generators.Simulation is an important method of investigating the fault and providing data support for fault monitoring.However,huge numbers o...Inter-turn short circuit of field windings is a common electrical fault of generators.Simulation is an important method of investigating the fault and providing data support for fault monitoring.However,huge numbers of pole pairs and damper loops in large hydro-generators would lead to lengthy calculation time,hindering scientific research and engineering application.To deal with this problem,we analyze a theoretical basis for a damper winding simplified model and then propose an equivalent treatment method.Through the analysis of steady-state current harmonic characteristics of generators with different stator winding configurations during the fault,the simplified models suitable for steady-state calculation are derived from two aspects,namely,additional rotor harmonic current frequency characteristics and the relationship of the amplitude as well as the phase of each branch current of the stator.The calculation and experimental results of the two simplified models are then compared to verify the models' correctness.A calculation example of the Three Gorges left bank VGS generator shows few deviations between the calculation results of the simplified model and the original model.Moreover,the calculation time using the simplified model is 1/1500 that using the original model,which provides a more effective tool for on-line fault monitoring.Finally,the sensitivity-verification application of the fault-monitoring scheme based on the stator steady-state unbalanced current RMS is depicted.The result shows that the scheme can monitor two-turn short circuits of field windings in the Three Gorges generator and provide high sensitivity.展开更多
文摘To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorithm and wavelet packet was proposed. First, according to the maximum inner product between the current signal and the cosine basis functions, this method could precisely estimate the waveform parameters of the fundamental component using the powerful global search capability of the BBPSO, which can eliminate the fundamental component and not affect other harmonic components. Then, the harmonic components of residual current signal were decomposed to a series of frequency bands by wavelet packet to extract the interturn circuit fault features of the induction motor. Finally, the results of simulation and laboratory tests demonstrated the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant No. 50807027)the China Postdoctoral Science Foundation(Grant No. 2012M520155)the Fundamental Research Funds for the Central Universities (Grant No. 2013JBM081)
文摘Inter-turn short circuit of field windings is a common electrical fault of generators.Simulation is an important method of investigating the fault and providing data support for fault monitoring.However,huge numbers of pole pairs and damper loops in large hydro-generators would lead to lengthy calculation time,hindering scientific research and engineering application.To deal with this problem,we analyze a theoretical basis for a damper winding simplified model and then propose an equivalent treatment method.Through the analysis of steady-state current harmonic characteristics of generators with different stator winding configurations during the fault,the simplified models suitable for steady-state calculation are derived from two aspects,namely,additional rotor harmonic current frequency characteristics and the relationship of the amplitude as well as the phase of each branch current of the stator.The calculation and experimental results of the two simplified models are then compared to verify the models' correctness.A calculation example of the Three Gorges left bank VGS generator shows few deviations between the calculation results of the simplified model and the original model.Moreover,the calculation time using the simplified model is 1/1500 that using the original model,which provides a more effective tool for on-line fault monitoring.Finally,the sensitivity-verification application of the fault-monitoring scheme based on the stator steady-state unbalanced current RMS is depicted.The result shows that the scheme can monitor two-turn short circuits of field windings in the Three Gorges generator and provide high sensitivity.