电流镜输出误差主要由3个不同失配源造成:漏源电压(V_(DS)),阈值电压(V_(th)),跨导系数(β)。其中,第一项V_(DS)失配通常是由有限输出阻抗引起的确定性误差,该误差可以通过使用级联结构以及增益提升技术避免,后两项V_(th)和β失配是由...电流镜输出误差主要由3个不同失配源造成:漏源电压(V_(DS)),阈值电压(V_(th)),跨导系数(β)。其中,第一项V_(DS)失配通常是由有限输出阻抗引起的确定性误差,该误差可以通过使用级联结构以及增益提升技术避免,后两项V_(th)和β失配是由工艺引起的随机性误差。为解决电流镜因工艺失配现象导致的电压电流(Voltage to Current)转换电路精度、线性度较差的问题,提出了一种动态元件匹配(Dynamic Element Match,DEM)以及修调技术(TRIM)相结合的电流镜校准方法,该方法使用TRIM技术将待校准输出电流镜支路和基准电流镜支路之间的误差电流,通过电容与MOS管转换成校准电流后反馈流入待校准输出电流镜支路完成校准,并通过DEM技术切换多条待校准输出电流镜支路完成校准的同时使输出误差平均化。本文采用SMIC 0.18μm BCD工艺对所提出的V-I转换电路进行了电路设计,仿真结果表明,V-I转换电路的输出电流的失配误差从0.12%下降到了0.03%,有效位数ENOB达到了11.2 bit,总谐波失真THD为−72.6 dB。展开更多
本文介绍了一种W波段的波导魔T的设计,利用在魔T接头处添加匹配元件,通过三维仿真软件进行分析计算。在90~98GHz范围内实现了功率等分,回波损耗大于17 d B,幅度不平衡度小于0.1 d B,输出端口的隔离度优于-25 d B,插入损耗小于0.1 d B。...本文介绍了一种W波段的波导魔T的设计,利用在魔T接头处添加匹配元件,通过三维仿真软件进行分析计算。在90~98GHz范围内实现了功率等分,回波损耗大于17 d B,幅度不平衡度小于0.1 d B,输出端口的隔离度优于-25 d B,插入损耗小于0.1 d B。满足在W波段实现功率合成的要求。展开更多
分析了目前分段电流舵数模转换器(DAC)在动态性能提升和芯片面积缩小等方面的局限性。提出了动态元件匹配(DEM)译码技术。设计了16 bit DAC中的DEM译码电路结构,分析了DEM译码技术的原理。对该16 bit DAC的动态性能等进行了详细仿真...分析了目前分段电流舵数模转换器(DAC)在动态性能提升和芯片面积缩小等方面的局限性。提出了动态元件匹配(DEM)译码技术。设计了16 bit DAC中的DEM译码电路结构,分析了DEM译码技术的原理。对该16 bit DAC的动态性能等进行了详细仿真,并完成了整体版图设计。该DAC核心部分芯片面积仅为2. 2 mm^2。采用0. 18μm CMOS工艺完成了该DAC的加工和性能参数测试。在1 GHz采样率和100 MHz输入信号频率条件下,该DAC的无杂散动态范围约为67 dB,三阶互调失真约为76 dB,整体性能优于目前同类研究成果。展开更多
文摘电流镜输出误差主要由3个不同失配源造成:漏源电压(V_(DS)),阈值电压(V_(th)),跨导系数(β)。其中,第一项V_(DS)失配通常是由有限输出阻抗引起的确定性误差,该误差可以通过使用级联结构以及增益提升技术避免,后两项V_(th)和β失配是由工艺引起的随机性误差。为解决电流镜因工艺失配现象导致的电压电流(Voltage to Current)转换电路精度、线性度较差的问题,提出了一种动态元件匹配(Dynamic Element Match,DEM)以及修调技术(TRIM)相结合的电流镜校准方法,该方法使用TRIM技术将待校准输出电流镜支路和基准电流镜支路之间的误差电流,通过电容与MOS管转换成校准电流后反馈流入待校准输出电流镜支路完成校准,并通过DEM技术切换多条待校准输出电流镜支路完成校准的同时使输出误差平均化。本文采用SMIC 0.18μm BCD工艺对所提出的V-I转换电路进行了电路设计,仿真结果表明,V-I转换电路的输出电流的失配误差从0.12%下降到了0.03%,有效位数ENOB达到了11.2 bit,总谐波失真THD为−72.6 dB。