Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q...Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.展开更多
In view of the airborne application characteristics such as flexible flight, large error of altimeter, large initial error of inertial navigation system, etc., a new terrain matching system architecture which is suita...In view of the airborne application characteristics such as flexible flight, large error of altimeter, large initial error of inertial navigation system, etc., a new terrain matching system architecture which is suitable for airborne application is presented. The key techniques in terrain matching system realizing process including system workflow, terrain matching algorithm and selection criterion of matching region are expatiated. The experimental results prove the rationality and feasibility of the proposed solution.展开更多
文摘Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.
基金This work was supported by the National Key Basic Research and Development (973) Program of China (Grant No. 2010CB731806) and Aeronautical Science Foundation of China (Grant No. 20100818018).
文摘In view of the airborne application characteristics such as flexible flight, large error of altimeter, large initial error of inertial navigation system, etc., a new terrain matching system architecture which is suitable for airborne application is presented. The key techniques in terrain matching system realizing process including system workflow, terrain matching algorithm and selection criterion of matching region are expatiated. The experimental results prove the rationality and feasibility of the proposed solution.