To slove the problems of constrained energy and unbalanced load of wireless sensor network(WSN)nodes,a multipath load balancing routing algorithm based on neighborhood subspace cooperation is proposed.The algorithm ad...To slove the problems of constrained energy and unbalanced load of wireless sensor network(WSN)nodes,a multipath load balancing routing algorithm based on neighborhood subspace cooperation is proposed.The algorithm adopts the improved particle swarm optimization(PSO)algorithm,takes the shortest distance and minimum energy consumption as optimization target and divides the nodes in one-hop neighborhood near the base station area into different regions.Furthermore,the algorithm designs a fitness function to find the best node in each region as a relay node and forward the data in parallel through the different paths of the relay nodes.The simulation results show that the proposed algorithm can reduce energy consumption and average end-to-end delay,balance network load and prolong network lifetime effectively.展开更多
Particle number size distribution(PNSD) between 10 nm and 20 μm were measured in the Pearl River Delta(PRD) region in winter 2011.The average particle number concentration of the nucleation mode(10-20 nm),Aitken mode...Particle number size distribution(PNSD) between 10 nm and 20 μm were measured in the Pearl River Delta(PRD) region in winter 2011.The average particle number concentration of the nucleation mode(10-20 nm),Aitken mode(20-100 nm),accumulation mode(100 nm-1μm) and coarse mode(1-20 μm) particles were 1 552,7 470,4 012,and 19 cm-3,respectively.The volume concentration of accumulation mode particles with peak at 300 nm accounted for over 70% of the total volume concentration.Diurnal variations and dependencies on meteorological parameters of PNSD were investigated.The diurnal variation of nucleation mode particles was mainly influenced by new particle formation events,while the diurnal variation of Aitken mode particles correlated to the traffic emission and the growth process of nucleation mode particles.When the PRD region was controlled by a cold high pressure,conditions of low relative humidity,high wind speed and strong radiation are favorable for the occurrence of new particle formation(NPF) events.The frequency of occurrence of NPF events was 21.3% during the whole measurement period.Parameters describing NPF events,including growth rate(GR) and source rate of condensable vapor(Q),were slightly larger than those in previous literature.This suggests that intense photochemical and biological activities may be the source of condensable vapor for particle growth,even during winter in the PRD.展开更多
The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,...The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,were studied according to the normal mean mass diameter and fractal theory.The present research showed that the stability of the soil aggregates was different for the different land use types.When the soil depth was 0-30 cm,farmland soil formed more aggregates with diameters greater than 0.25 mm,i.e.,the farmland soil was more stable than that of the other three land uses.When the soil depth was 30-45 cm,the order of stability of the soil aggregates was woodland > grassland > farmland > bare land.The fractal dimensions had a significant linear positive correlation with the amount of soil particles with diameters of <0.25 mm,and a significant negative linear correlation with the amount of soil particles with diameters of 0.25-0.5 mm,0.5-1 mm and 1-2 mm.Smaller fractal dimensions of the soil particles correlated with more stable soil aggregates.The fractal dimensions had a positive linear correlation with the soil bulk density and a negative correlation with the concentration of organic matter.These results showed that soil aggregates can be used as a parameter for characterizing the soil structures and properties.According to these results,the soil particle fractal dimensions could not only objectively characterize the stability of the soil structure but also could be used to indicate soil structure and properties.In addition,these results have great significance for the discussion of the comprehensive evaluation of soil.展开更多
基金National Natural Science Foundation of China(No.11461038)Science and Technology Plan of Gansu Province(No.144NKCA040)
文摘To slove the problems of constrained energy and unbalanced load of wireless sensor network(WSN)nodes,a multipath load balancing routing algorithm based on neighborhood subspace cooperation is proposed.The algorithm adopts the improved particle swarm optimization(PSO)algorithm,takes the shortest distance and minimum energy consumption as optimization target and divides the nodes in one-hop neighborhood near the base station area into different regions.Furthermore,the algorithm designs a fitness function to find the best node in each region as a relay node and forward the data in parallel through the different paths of the relay nodes.The simulation results show that the proposed algorithm can reduce energy consumption and average end-to-end delay,balance network load and prolong network lifetime effectively.
基金Natural Science Foundation of China(41375156)Natural Science Foundation of Guangdong Province,China(S2013010013265)+2 种基金Special R&D fund for research institutes(2014EG137243)National Key Project of Basic Research(2011CB403403)Science and Technology Planning Project for Guangdong Province(2012A061400012)
文摘Particle number size distribution(PNSD) between 10 nm and 20 μm were measured in the Pearl River Delta(PRD) region in winter 2011.The average particle number concentration of the nucleation mode(10-20 nm),Aitken mode(20-100 nm),accumulation mode(100 nm-1μm) and coarse mode(1-20 μm) particles were 1 552,7 470,4 012,and 19 cm-3,respectively.The volume concentration of accumulation mode particles with peak at 300 nm accounted for over 70% of the total volume concentration.Diurnal variations and dependencies on meteorological parameters of PNSD were investigated.The diurnal variation of nucleation mode particles was mainly influenced by new particle formation events,while the diurnal variation of Aitken mode particles correlated to the traffic emission and the growth process of nucleation mode particles.When the PRD region was controlled by a cold high pressure,conditions of low relative humidity,high wind speed and strong radiation are favorable for the occurrence of new particle formation(NPF) events.The frequency of occurrence of NPF events was 21.3% during the whole measurement period.Parameters describing NPF events,including growth rate(GR) and source rate of condensable vapor(Q),were slightly larger than those in previous literature.This suggests that intense photochemical and biological activities may be the source of condensable vapor for particle growth,even during winter in the PRD.
基金supported by the Research Fund for Commonweal Trades Meteorology (Grant No. GYHY201006039)the Starting fund fordoctoral research of Neijiang Normal University(Grant No.09249)
文摘The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,were studied according to the normal mean mass diameter and fractal theory.The present research showed that the stability of the soil aggregates was different for the different land use types.When the soil depth was 0-30 cm,farmland soil formed more aggregates with diameters greater than 0.25 mm,i.e.,the farmland soil was more stable than that of the other three land uses.When the soil depth was 30-45 cm,the order of stability of the soil aggregates was woodland > grassland > farmland > bare land.The fractal dimensions had a significant linear positive correlation with the amount of soil particles with diameters of <0.25 mm,and a significant negative linear correlation with the amount of soil particles with diameters of 0.25-0.5 mm,0.5-1 mm and 1-2 mm.Smaller fractal dimensions of the soil particles correlated with more stable soil aggregates.The fractal dimensions had a positive linear correlation with the soil bulk density and a negative correlation with the concentration of organic matter.These results showed that soil aggregates can be used as a parameter for characterizing the soil structures and properties.According to these results,the soil particle fractal dimensions could not only objectively characterize the stability of the soil structure but also could be used to indicate soil structure and properties.In addition,these results have great significance for the discussion of the comprehensive evaluation of soil.