期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于区域互补注意力和多维注意力的轻量级图像超分辨率网络
被引量:
6
1
作者
周登文
王婉君
+1 位作者
马钰
高丹丹
《模式识别与人工智能》
EI
CSCD
北大核心
2022年第7期625-636,共12页
轻量级卷积神经网络具有参数量较小、计算量较小、推理速度较快等特点,但性能受到极大限制.为了进一步提升轻量级图像超分辨率网络的性能,文中提出基于区域互补注意力和多维注意力的轻量级图像超分辨率网络.网络基本构件是双支路的多交...
轻量级卷积神经网络具有参数量较小、计算量较小、推理速度较快等特点,但性能受到极大限制.为了进一步提升轻量级图像超分辨率网络的性能,文中提出基于区域互补注意力和多维注意力的轻量级图像超分辨率网络.网络基本构件是双支路的多交互残差块,可有效融合多尺度特征.为了提高特征的利用率和表达能力,设计轻量且有效的区域互补注意力,使特征图不同区域的信息互相补充.同时设计多维注意力,分别在通道维和空间维建模像素间的依赖关系.实验表明文中网络性能较优,并将当前轻量级超分辨率网络的复杂度和性能平衡提升到一个较高水平.
展开更多
关键词
图像超分辨率
卷积神经网络
特征融合
注意力机制
多尺度特征
区域信息互补
下载PDF
职称材料
题名
基于区域互补注意力和多维注意力的轻量级图像超分辨率网络
被引量:
6
1
作者
周登文
王婉君
马钰
高丹丹
机构
华北电力大学控制与计算机工程学院
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2022年第7期625-636,共12页
文摘
轻量级卷积神经网络具有参数量较小、计算量较小、推理速度较快等特点,但性能受到极大限制.为了进一步提升轻量级图像超分辨率网络的性能,文中提出基于区域互补注意力和多维注意力的轻量级图像超分辨率网络.网络基本构件是双支路的多交互残差块,可有效融合多尺度特征.为了提高特征的利用率和表达能力,设计轻量且有效的区域互补注意力,使特征图不同区域的信息互相补充.同时设计多维注意力,分别在通道维和空间维建模像素间的依赖关系.实验表明文中网络性能较优,并将当前轻量级超分辨率网络的复杂度和性能平衡提升到一个较高水平.
关键词
图像超分辨率
卷积神经网络
特征融合
注意力机制
多尺度特征
区域信息互补
Keywords
Image Super-Resolution
Convolutional Neural Network
Feature Fusion
Attention Mechanism
Multi-scale Feature
Regional Information Complementarity
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于区域互补注意力和多维注意力的轻量级图像超分辨率网络
周登文
王婉君
马钰
高丹丹
《模式识别与人工智能》
EI
CSCD
北大核心
2022
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部