针对测量数据中粗差干扰及高程异常拟合方法选择较为困难的问题,结合格拉布斯(Grubbs)法判别粗差的原理,提出一种改进格拉布斯(Improved Grubbs,IGrubbs)结合局部加权线性回归(Local Weighted Linear Regression,LWLR)的拟合模型构建法...针对测量数据中粗差干扰及高程异常拟合方法选择较为困难的问题,结合格拉布斯(Grubbs)法判别粗差的原理,提出一种改进格拉布斯(Improved Grubbs,IGrubbs)结合局部加权线性回归(Local Weighted Linear Regression,LWLR)的拟合模型构建法。在原Grubbs法则的基础上,引入自适应迭代,在训练数据中,对粗差进行识别,并设定粗差剔除完成的指标参数,从而降低原方法中发生误判或漏判的概率,并利用局部加权线性回归法通过预处理后的训练样本数据来建立区域高程异常拟合模型。实验结果表明,相较于传统Grubbs法则,改进后的Grubbs法对于高程异常数据中的粗差剔除更为快速有效,且利用局部加权线性回归法所构建的区域高程异常拟合模型的预测精度及稳定性也得到一定程度的提高,对今后工程中的测高工作具备一定的参考意义。展开更多
针对传统水平集方法在分割灰度不均匀图像的过程中存在分割精度低的问题,提出一种自适应区域拟合的非均匀图像分割算法。首先构建自适应的区域拟合能量项来保留更多待分割图像局部区域内的细节信息,实现图像的准确分割;其次引入非凸正...针对传统水平集方法在分割灰度不均匀图像的过程中存在分割精度低的问题,提出一种自适应区域拟合的非均匀图像分割算法。首先构建自适应的区域拟合能量项来保留更多待分割图像局部区域内的细节信息,实现图像的准确分割;其次引入非凸正则项来平滑曲线并保护图像的边缘;然后添加能量惩罚项对水平集函数进行约束,提高算法的分割效率;最后对合成图像和真实图像进行实验验证。实验结果表明,所提算法的Dice相似系数平均值为88.62%,Jaccard相似系数平均值为79.86%,准确率平均值为92.48%,比Local Binary Fitting(LBF)、Local and Global Intensity Fitting(LGIF)、Local Pre-fitting(LPF)三种模型的总体平均值分别高18.19个百分点、16.10个百分点、13个百分点。展开更多
针对区域可伸缩拟合局部熵(region-scalable fitting based on local entropy,RSF_LE)模型图像分割效率低的问题,本研究提出一种改进的RSF_LE模型。定义带有加权局部灰度拟合项以及辅助的加权全局灰度拟合项的能量泛函,其中加权局部灰...针对区域可伸缩拟合局部熵(region-scalable fitting based on local entropy,RSF_LE)模型图像分割效率低的问题,本研究提出一种改进的RSF_LE模型。定义带有加权局部灰度拟合项以及辅助的加权全局灰度拟合项的能量泛函,其中加权局部灰度拟合项负责对目标边界附近的轮廓进行诱导,使其靠近目标物边界,加权全局灰度拟合项利用图像的全局信息来引导远离目标的轮廓向目标靠拢,该方法可以克服传统的RSF_LE模型分割算法效率低下的问题,并提高了该方法的鲁棒性。展开更多
文摘针对测量数据中粗差干扰及高程异常拟合方法选择较为困难的问题,结合格拉布斯(Grubbs)法判别粗差的原理,提出一种改进格拉布斯(Improved Grubbs,IGrubbs)结合局部加权线性回归(Local Weighted Linear Regression,LWLR)的拟合模型构建法。在原Grubbs法则的基础上,引入自适应迭代,在训练数据中,对粗差进行识别,并设定粗差剔除完成的指标参数,从而降低原方法中发生误判或漏判的概率,并利用局部加权线性回归法通过预处理后的训练样本数据来建立区域高程异常拟合模型。实验结果表明,相较于传统Grubbs法则,改进后的Grubbs法对于高程异常数据中的粗差剔除更为快速有效,且利用局部加权线性回归法所构建的区域高程异常拟合模型的预测精度及稳定性也得到一定程度的提高,对今后工程中的测高工作具备一定的参考意义。
文摘针对传统水平集方法在分割灰度不均匀图像的过程中存在分割精度低的问题,提出一种自适应区域拟合的非均匀图像分割算法。首先构建自适应的区域拟合能量项来保留更多待分割图像局部区域内的细节信息,实现图像的准确分割;其次引入非凸正则项来平滑曲线并保护图像的边缘;然后添加能量惩罚项对水平集函数进行约束,提高算法的分割效率;最后对合成图像和真实图像进行实验验证。实验结果表明,所提算法的Dice相似系数平均值为88.62%,Jaccard相似系数平均值为79.86%,准确率平均值为92.48%,比Local Binary Fitting(LBF)、Local and Global Intensity Fitting(LGIF)、Local Pre-fitting(LPF)三种模型的总体平均值分别高18.19个百分点、16.10个百分点、13个百分点。
文摘针对区域可伸缩拟合局部熵(region-scalable fitting based on local entropy,RSF_LE)模型图像分割效率低的问题,本研究提出一种改进的RSF_LE模型。定义带有加权局部灰度拟合项以及辅助的加权全局灰度拟合项的能量泛函,其中加权局部灰度拟合项负责对目标边界附近的轮廓进行诱导,使其靠近目标物边界,加权全局灰度拟合项利用图像的全局信息来引导远离目标的轮廓向目标靠拢,该方法可以克服传统的RSF_LE模型分割算法效率低下的问题,并提高了该方法的鲁棒性。