输入图像尺度不一导致在复杂背景上基于深度学习的目标检测算法存在检测速度慢和检测精度低的问题。为了解决这些问题,基于更快区域卷积网络,提出一种包含区域网络、特征提取和区域分类3个模块的目标检测算法。首先通过感兴趣区域提取网...输入图像尺度不一导致在复杂背景上基于深度学习的目标检测算法存在检测速度慢和检测精度低的问题。为了解决这些问题,基于更快区域卷积网络,提出一种包含区域网络、特征提取和区域分类3个模块的目标检测算法。首先通过感兴趣区域提取网络RPNS和RPNB,得到带有对象得分的矩形目标推荐;再利用多尺度和多高宽比的锚点框计算并提取每个推荐的局部特征;最后用剔除重叠度(Degree of overlap,DOL)设置阈值进行分类和回归。实验结果表明,该算法在多尺度目标的图像上有更好的鲁棒性,平均准确度均值(mean Average Precision,mAP)达75.4%,多尺度目标检测性能有所提升。展开更多
文摘输入图像尺度不一导致在复杂背景上基于深度学习的目标检测算法存在检测速度慢和检测精度低的问题。为了解决这些问题,基于更快区域卷积网络,提出一种包含区域网络、特征提取和区域分类3个模块的目标检测算法。首先通过感兴趣区域提取网络RPNS和RPNB,得到带有对象得分的矩形目标推荐;再利用多尺度和多高宽比的锚点框计算并提取每个推荐的局部特征;最后用剔除重叠度(Degree of overlap,DOL)设置阈值进行分类和回归。实验结果表明,该算法在多尺度目标的图像上有更好的鲁棒性,平均准确度均值(mean Average Precision,mAP)达75.4%,多尺度目标检测性能有所提升。