Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in...Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.展开更多
The future climate dynamical downscaling method is that output of general circulation models( GCMs) is employed to provide initial conditions,lateral boundary conditions,sea surface temperatures,and initial land surfa...The future climate dynamical downscaling method is that output of general circulation models( GCMs) is employed to provide initial conditions,lateral boundary conditions,sea surface temperatures,and initial land surface conditions to regional climate models( RCMs). There are two methods of downscaling: offline coupling and online coupling. The two kinds of coupling methods are described in detail by coupling the Weather Research and Forecasting model( WRF) with the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model Version 4. 0( IAP AGCM4. 0) in the study. And the extreme precipitation event over Beijing on July 212012 is simulated by using the two coupling methods. Results show that online coupling method is of great value in improving the model simulation. Furthermore,the data exchange frequency of online coupling has some effect on simulation result.展开更多
Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM dev...Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM development in East Asia.The Regional Integrated Environment Modeling System,version 2.0 (RIEMS2.0),has been developed from an earlier RCM,RIEMS1.0,by the Key Laboratory of Regional ClimateEnvironment for Temperate East Asia (RCE-TEA) and Nanjing University.A numerical experiment covering 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) with a 50-km spatial resolution was performed to test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications.The simulated surface air temperature (SAT) was compared with observed meteorological data.The results show that RIEMS2.0 simulation reproduced the SAT spatial distribution in East Asia but that it was underestimated.The simulated 30-year averaged SAT was approximately 2.0°C lower than the observed SAT.The annual and interannual variations in the averaged SAT and their anomalies were both well reproduced in the model.A further analysis of three sub-regions representing different longitudinal ranges showed that there is a good correlation and consistency between the simulated results and the observed data.The annual variations,interannual variations for the averaged SAT,and the anomalies in the three sub-regions were also captured well by the model.In summary,RIEMS2.0 shows stability and does well both in simulating the long-term SAT in East Asia and in expressing sub-regional characteristics.展开更多
Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tari...Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.展开更多
Daily temperature data from 599 stations across China for the years 1961 to 2007 were used to analyze the changes in the natural regional boundaries. The results show that the accumulated temperature ≥10℃ and its du...Daily temperature data from 599 stations across China for the years 1961 to 2007 were used to analyze the changes in the natural regional boundaries. The results show that the accumulated temperature ≥10℃ and its duration changed dramatically from the end of 1990s to the early 21 st century. The amplitude of natural regional boundaries was greater in the 21st century than it was in the 20th century. In the eastern region of China, the climatic zones were migrating generally northward, with the northern edge of the subtropical zone and the eastern section of the warm temperate zone showing an obvious northward shift of up to 1-3° of latitude. The climatic zones moved south in the Qinghal-Tibet Plateau, western Inner Mongolia, and some areas of western Xinjiang, and slightly to the north in other parts of the western region.展开更多
A relative humidity series of April-August during 1825-2009 AD was reconstructed based on tree- ring width of Pinus sylvestris var. mongolica for the Hulunbuir area. During the past 185 years, 25 humid years and 26 ar...A relative humidity series of April-August during 1825-2009 AD was reconstructed based on tree- ring width of Pinus sylvestris var. mongolica for the Hulunbuir area. During the past 185 years, 25 humid years and 26 arid years were identified in the reconstruction, as well as 6 wet periods and 6 dry periods. The relative humidity has decreased since approximately the 1950s, suggesting a warm and dry climate trend in the study area. The reconstruction can be compared with those of the surrounding tree ring reconstructed precipitation and rela- tive humidity series at the decadal scale, reflecting the consistency of the regional climate variations. Besides, significant positive correlations are revealed between the reconstruction and the normalized difference vegetation index of the Hulunbuir grassland. And the decrease in relative humidity will cause negative impacts on the Hulunbuir grassland. Comparisons between the sandstorm records and the relative humidity of the study area indicate that strong sandstorms occurred more frequently in Hulunbuir when the relative humidity was low. Therefore, under the downward trend in relative humidity, more effort should be made to protect the grassland ecology and treat the bare sand land for the local and surrounding areas.展开更多
Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing s...Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940–1980 and the zonal shift of aerosol forcing for 1980–2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean–atmosphere interactions, respectively.The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Ni?a-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change.展开更多
基金supported by the National Basic Research Program of China(Grant No.2009CB421407)the National Natural Science Foundation of China(Grant No.41130103)
文摘Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.
基金Supported by the National Natural Science Foundation of China(No.61602477)China Postdoctoral Science Foundation(No.2016M601158)National Key Research and Development Program of China(No.2016YFB0200804)
文摘The future climate dynamical downscaling method is that output of general circulation models( GCMs) is employed to provide initial conditions,lateral boundary conditions,sea surface temperatures,and initial land surface conditions to regional climate models( RCMs). There are two methods of downscaling: offline coupling and online coupling. The two kinds of coupling methods are described in detail by coupling the Weather Research and Forecasting model( WRF) with the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model Version 4. 0( IAP AGCM4. 0) in the study. And the extreme precipitation event over Beijing on July 212012 is simulated by using the two coupling methods. Results show that online coupling method is of great value in improving the model simulation. Furthermore,the data exchange frequency of online coupling has some effect on simulation result.
基金supported by the National Basic Research Program of China under Grant 2011CB952003the Chinese Academy of Sciences Strategic Priority Program under Grant XDA05090206the National Natural Science Foundation of China under Grant 40975053
文摘Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM development in East Asia.The Regional Integrated Environment Modeling System,version 2.0 (RIEMS2.0),has been developed from an earlier RCM,RIEMS1.0,by the Key Laboratory of Regional ClimateEnvironment for Temperate East Asia (RCE-TEA) and Nanjing University.A numerical experiment covering 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) with a 50-km spatial resolution was performed to test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications.The simulated surface air temperature (SAT) was compared with observed meteorological data.The results show that RIEMS2.0 simulation reproduced the SAT spatial distribution in East Asia but that it was underestimated.The simulated 30-year averaged SAT was approximately 2.0°C lower than the observed SAT.The annual and interannual variations in the averaged SAT and their anomalies were both well reproduced in the model.A further analysis of three sub-regions representing different longitudinal ranges showed that there is a good correlation and consistency between the simulated results and the observed data.The annual variations,interannual variations for the averaged SAT,and the anomalies in the three sub-regions were also captured well by the model.In summary,RIEMS2.0 shows stability and does well both in simulating the long-term SAT in East Asia and in expressing sub-regional characteristics.
基金Under the auspices of the Second-stage Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-XB2-03,KZCX2-YW-127)National Natural Science Foundation of China (No 40671014)Shanghai Academic Discipline Project (Human Geography) (No B410)
文摘Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.
基金supported by the National Natural Science Foundation of China (Grant No.40875053)
文摘Daily temperature data from 599 stations across China for the years 1961 to 2007 were used to analyze the changes in the natural regional boundaries. The results show that the accumulated temperature ≥10℃ and its duration changed dramatically from the end of 1990s to the early 21 st century. The amplitude of natural regional boundaries was greater in the 21st century than it was in the 20th century. In the eastern region of China, the climatic zones were migrating generally northward, with the northern edge of the subtropical zone and the eastern section of the warm temperate zone showing an obvious northward shift of up to 1-3° of latitude. The climatic zones moved south in the Qinghal-Tibet Plateau, western Inner Mongolia, and some areas of western Xinjiang, and slightly to the north in other parts of the western region.
基金supported by the State Key Laboratory of Loess and Quaternary Geology(SKLLQG1316)the Scientific Research Plan Projects of Shaanxi Education Department(15JK1796)+1 种基金the Dominant Discipline Construction Projects of Shaanxi(Historical Geography 0602 SZXKY1302)the Specialized Research Fund Project of Xianyang Normal University(12XSYK0310)
文摘A relative humidity series of April-August during 1825-2009 AD was reconstructed based on tree- ring width of Pinus sylvestris var. mongolica for the Hulunbuir area. During the past 185 years, 25 humid years and 26 arid years were identified in the reconstruction, as well as 6 wet periods and 6 dry periods. The relative humidity has decreased since approximately the 1950s, suggesting a warm and dry climate trend in the study area. The reconstruction can be compared with those of the surrounding tree ring reconstructed precipitation and rela- tive humidity series at the decadal scale, reflecting the consistency of the regional climate variations. Besides, significant positive correlations are revealed between the reconstruction and the normalized difference vegetation index of the Hulunbuir grassland. And the decrease in relative humidity will cause negative impacts on the Hulunbuir grassland. Comparisons between the sandstorm records and the relative humidity of the study area indicate that strong sandstorms occurred more frequently in Hulunbuir when the relative humidity was low. Therefore, under the downward trend in relative humidity, more effort should be made to protect the grassland ecology and treat the bare sand land for the local and surrounding areas.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016R1A1A3A04005520 and 2017K2A9A1A06056874)supported by the National Science Foundation (AGS-1934392)+1 种基金The Community Earth System Model project is supported primarily by the National Science Foundation (NSF)supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement (1852977)。
文摘Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940–1980 and the zonal shift of aerosol forcing for 1980–2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean–atmosphere interactions, respectively.The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Ni?a-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change.