期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Faster-RCNN改进的目标检测算法
1
作者 白晨帅 邬开俊 +2 位作者 王迪聪 黄涛 陶小苗 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2023年第4期485-492,共8页
以Faster-RCNN目标检测算法为基础,用(1×3+3×1+3×3)非对称卷积块替代Faster-RCNN网络模型的3×3卷积核,提出一种基于Faster-RCNN的改进目标检测算法。首先,将残差网络ResNet作为算法骨干,用于提取图像的特征图(Featu... 以Faster-RCNN目标检测算法为基础,用(1×3+3×1+3×3)非对称卷积块替代Faster-RCNN网络模型的3×3卷积核,提出一种基于Faster-RCNN的改进目标检测算法。首先,将残差网络ResNet作为算法骨干,用于提取图像的特征图(Feature map),将Feature map先通过(1×3+3×1+3×3)的卷积核块之后经过两个1×1的卷积核。其次,利用区域建议网络(Regional proposal network,RPN)获得共享特征层的建议框,把建议框映射到卷积的最后一层Feature map上,通过感兴趣区域池化层(Region of interest,RoI)将不同尺寸的锚框进行归一化。最后,利用探测分类概率(Softmax loss)和探测边框回归(Smooth L1 loss)进行训练。本文使用的是PASCAL_VOC数据集,平均查确率(Mean average precision,mAP)结果表明,相比于原始Faster-RCNN算法,mAP值提高了0.38%,相比于RetinaNet算法,mAP值提高了2.68%,相比于YOLOv4算法,mAP值提高了3.41%。 展开更多
关键词 Faster-RCNN 目标检测算法 非对称卷积块 区域建议网络 区域池化层
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部