An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module ...An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module act as mobile nodes,with various on-board sensors,Tp-link wireless local area network cards,and Tp-link wireless routers.The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network.The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots.This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments.In post-disaster areas,the network is usually absent or variable and the site scene is cluttered with obstacles.To adapt to such harsh situations,the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage.The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN.Therefore,the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment.Simulations and experiments validate the improved performances of the exploration area coverage,object marked,and loop closure,which are adapted to search and rescue post-disaster cluttered environments.展开更多
Traditional human detection using pre-trained detectors tends to be computationally intensive for time-critical tracking tasks, and the detection rate is prone to be unsatisfying when occlusion, motion blur and body d...Traditional human detection using pre-trained detectors tends to be computationally intensive for time-critical tracking tasks, and the detection rate is prone to be unsatisfying when occlusion, motion blur and body deformation occur frequently. A spatial-confidential proposal filtering method(SCPF) is proposed for efficient and accurate human detection. It consists of two filtering phases: spatial proposal filtering and confidential proposal filtering. A compact spatial proposal is generated in the first phase to minimize the search space to reduce the computation cost. The human detector only estimates the confidence scores of the candidate search regions accepted by the spatial proposal instead of global scanning. At the second phase, each candidate search region is assigned with a supplementary confidence score according to their reliability estimated by the confidential proposal to reduce missing detections. The performance of the SCPF method is verified by extensive tests on several video sequences from available public datasets. Both quantitatively and qualitatively experimental results indicate that the proposed method can highly improve the efficiency and the accuracy of human detection.展开更多
基金Projects(61573213,61473174,61473179)supported by the National Natural Science Foundation of ChinaProjects(ZR2015PF009,ZR2014FM007)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(2014GGX103038)supported by the Shandong Province Science and Technology Development Program,ChinaProject(2014ZZCX04302)supported by the Special Technological Program of Transformation of Initiatively Innovative Achievements in Shandong Province,China
文摘An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module act as mobile nodes,with various on-board sensors,Tp-link wireless local area network cards,and Tp-link wireless routers.The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network.The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots.This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments.In post-disaster areas,the network is usually absent or variable and the site scene is cluttered with obstacles.To adapt to such harsh situations,the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage.The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN.Therefore,the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment.Simulations and experiments validate the improved performances of the exploration area coverage,object marked,and loop closure,which are adapted to search and rescue post-disaster cluttered environments.
基金Projects(61175096,60772063)supported by the National Natural Science Foundation of China
文摘Traditional human detection using pre-trained detectors tends to be computationally intensive for time-critical tracking tasks, and the detection rate is prone to be unsatisfying when occlusion, motion blur and body deformation occur frequently. A spatial-confidential proposal filtering method(SCPF) is proposed for efficient and accurate human detection. It consists of two filtering phases: spatial proposal filtering and confidential proposal filtering. A compact spatial proposal is generated in the first phase to minimize the search space to reduce the computation cost. The human detector only estimates the confidence scores of the candidate search regions accepted by the spatial proposal instead of global scanning. At the second phase, each candidate search region is assigned with a supplementary confidence score according to their reliability estimated by the confidential proposal to reduce missing detections. The performance of the SCPF method is verified by extensive tests on several video sequences from available public datasets. Both quantitatively and qualitatively experimental results indicate that the proposed method can highly improve the efficiency and the accuracy of human detection.