经常发生的地磁暴可引起电离层异常,并导致穿过电离层的GNSS导航信号产生异常延迟甚至难以被观测处理。因此,有必要对地球磁暴引起的电离层异常响应特征开展系统深入研究。在已有的全球电离层异常研究基础上,充分发挥了省级连续运行参考...经常发生的地磁暴可引起电离层异常,并导致穿过电离层的GNSS导航信号产生异常延迟甚至难以被观测处理。因此,有必要对地球磁暴引起的电离层异常响应特征开展系统深入研究。在已有的全球电离层异常研究基础上,充分发挥了省级连续运行参考站(Continuous Operation Reference Station,CORS)网测站密度大、数据细节丰富的优势,建立了区域电离层模型,精细化提取了电离层异常值。初步分析了磁暴期间电离层异常响应的时序关系、量级大小、空间分布和变化规律等:(1)磁暴与区域电离层异常之间的时间响应特征显示,地球磁暴可引起电离层异常,电离层异常在响应时间方面具有拖尾效应,磁暴结束24 h后电离层才恢复至磁暴前正常水平。(2)磁暴引起电离层垂直电子总含量(Vertical Total Electron Content,VTEC)异常变化的量级特征显示,小磁暴引起电离层天顶方向电子总量增大约9.5 TECU,对应视线方向电子总量增大约36 TECU。(3)磁暴引起电离层异常的空间分布特征显示,高纬度地区的电离层异常响应大于低纬度地区。(4)电离层异常响应的空间变化特征显示,磁暴期间电离层异常响应首先呈现出从南向北增大延伸态势;当电离层VTEC及其异常值达到峰值后,电离层异常响应呈现从北向南减弱回归态势。展开更多
文摘经常发生的地磁暴可引起电离层异常,并导致穿过电离层的GNSS导航信号产生异常延迟甚至难以被观测处理。因此,有必要对地球磁暴引起的电离层异常响应特征开展系统深入研究。在已有的全球电离层异常研究基础上,充分发挥了省级连续运行参考站(Continuous Operation Reference Station,CORS)网测站密度大、数据细节丰富的优势,建立了区域电离层模型,精细化提取了电离层异常值。初步分析了磁暴期间电离层异常响应的时序关系、量级大小、空间分布和变化规律等:(1)磁暴与区域电离层异常之间的时间响应特征显示,地球磁暴可引起电离层异常,电离层异常在响应时间方面具有拖尾效应,磁暴结束24 h后电离层才恢复至磁暴前正常水平。(2)磁暴引起电离层垂直电子总含量(Vertical Total Electron Content,VTEC)异常变化的量级特征显示,小磁暴引起电离层天顶方向电子总量增大约9.5 TECU,对应视线方向电子总量增大约36 TECU。(3)磁暴引起电离层异常的空间分布特征显示,高纬度地区的电离层异常响应大于低纬度地区。(4)电离层异常响应的空间变化特征显示,磁暴期间电离层异常响应首先呈现出从南向北增大延伸态势;当电离层VTEC及其异常值达到峰值后,电离层异常响应呈现从北向南减弱回归态势。