Based on the traditional finite volume method, a new numerical technique is presented for the transient temperature field prediction with interval uncertainties in both the physical parameters and initial/boundary con...Based on the traditional finite volume method, a new numerical technique is presented for the transient temperature field prediction with interval uncertainties in both the physical parameters and initial/boundary conditions. New stability theory applicable to interval discrete schemes is developed. Interval ranges of the uncertain temperature field can be approximately yielded by two kinds of parameter perturbation methods. Different order Neumann series are adopted to approximate the interval matrix inverse. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed model and methods.展开更多
基金supported by the National Special Fund for Major Research Instrument Development(Grant No.2011YQ140145)111 Project(Grant No.B07009)+1 种基金National Natural Science Foundation of China(Grant No.11002013)Defense Industrial Technology Development Program(Grant Nos.A2120110001 and B2120110011)
文摘Based on the traditional finite volume method, a new numerical technique is presented for the transient temperature field prediction with interval uncertainties in both the physical parameters and initial/boundary conditions. New stability theory applicable to interval discrete schemes is developed. Interval ranges of the uncertain temperature field can be approximately yielded by two kinds of parameter perturbation methods. Different order Neumann series are adopted to approximate the interval matrix inverse. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed model and methods.