期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
德尔菲法定量分析的拓展:区间二分法 被引量:7
1
作者 张明善 贾子超 +1 位作者 李天政 蔡新良 《西南民族大学学报(自然科学版)》 CAS 2007年第1期138-141,共4页
对德尔菲法进行扩展,给出了一种新的方法:区间二分法.即将专家组的定量预测区间按分值大小排序后分为两个区间,再取均值,循环该过程到专家意见收敛到一个满意的预测区间,即为专家意见集成.
关键词 德尔菲法 专家调查法 区间二分法 定量分析
下载PDF
解非线性方程的免导数牛顿算法 被引量:1
2
作者 李万斌 颜永明 《怀化学院学报》 2010年第5期34-37,共4页
通过函数值的运算近似牛顿法中的导数项,构造了一个免导数的牛顿法.该算法与牛顿法一样,具有二阶收敛速度,但不需要用到函数的导数.通过与二分法结合,实现该算法的全局收敛性.数值结果表明该算法是有效的.
关键词 非线性方程 免导数 区间二分法 二阶收敛
下载PDF
An iterative interval analysis method based on Kriging-HDMR for uncertainty problems
3
作者 Lei Ji Guangsong Chen +2 位作者 Linfang Qian Jia Ma Jinsong Tang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第7期164-176,I0004,共14页
In recent years,growing attention has been paid to the interval investigation of uncertainty problems.However,the contradiction between accuracy and efficiency always exists.In this paper,an iterative interval analysi... In recent years,growing attention has been paid to the interval investigation of uncertainty problems.However,the contradiction between accuracy and efficiency always exists.In this paper,an iterative interval analysis method based on Kriging-HDMR(IIAMKH)is proposed to obtain the lower and upper bounds of uncertainty problems considering interval variables.Firstly,Kriging-HDMR method is adopted to establish the meta-model of the response function.Then,the Genetic Algorithm&Sequential Quadratic Programing(GA&SQP)hybrid optimization method is applied to search for the minimum/maximum values of the meta-model,and thus the corresponding uncertain parameters can be obtained.By substituting them into the response function,we can acquire the predicted interval.Finally,an iterative process is developed to improve the accuracy and stability of the proposed method.Several numerical examples are investigated to demonstrate the effectiveness of the proposed method.Simulation results indicate that the presented IIAMKH can obtain more accurate results with fewer samples. 展开更多
关键词 UNCERTAINTY Interval analysis Iterative process Kriging-HDMR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部