期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于区间数回归模型的未决赔款准备金评估
1
作者 冯卫泽 王达布希拉图 《广州大学学报(自然科学版)》 CAS 2015年第1期12-17,共6页
区间数具有信息含量丰富、界限分明的优点,在实数型数据信息不完全的场合用区间数替代可提高回归模型的预测效果.非寿险未决赔款准备金是对保险公司的一项重要负债,其评估方法和效果对保险业发展至关重要.文章在链接法的指数平滑型进展... 区间数具有信息含量丰富、界限分明的优点,在实数型数据信息不完全的场合用区间数替代可提高回归模型的预测效果.非寿险未决赔款准备金是对保险公司的一项重要负债,其评估方法和效果对保险业发展至关重要.文章在链接法的指数平滑型进展因子基础上,利用区间数回归模型估计各发展年的进展因子,给出一种新的未来未决赔款准备金的估计方法. 展开更多
关键词 准备金 区间数回归 链梯法
下载PDF
一种考虑区间重合度的CCRM区间回归方法 被引量:1
2
作者 汪瑜 鄢仕林 何凡 《统计与决策》 CSSCI 北大核心 2022年第5期11-16,共6页
针对利用现有CCRM(Constrained Center-and-Range Method)方法在解决区间数回归问题中,在提高均方根误差精度的同时难以兼顾观测区间和预测区间重合度的缺陷,文章提出一种实现观测区间和预测区间具有最差重叠区的样本的重合度最大化,以... 针对利用现有CCRM(Constrained Center-and-Range Method)方法在解决区间数回归问题中,在提高均方根误差精度的同时难以兼顾观测区间和预测区间重合度的缺陷,文章提出一种实现观测区间和预测区间具有最差重叠区的样本的重合度最大化,以及使得中点及半径误差平方和最小化的非线性回归模型;证明了该非线性回归模型是一个满足K-T条件的凸规划问题。利用蒙特卡洛模拟对所提出的优化模型进行评价,结果表明:当模型只考虑中点及半径误差平方和最小化时,优化模型退化为CCRM;模型且结果优于CCRM模型;当优化模型只考虑观测区间和预测区间具有最差重叠区的样本的重合度最大化时,该模型优于CCRM;模型。 展开更多
关键词 回归分析 区间数回归 区间 CCRM 中点半径法
下载PDF
CONFIDENCE INTERVALS FOR NONPARAMETRIC REGRESSION FUNCTIONS WITH MISSING DATA: MULTIPLE DESIGN CASE 被引量:2
3
作者 Qingzhu LEI Yongsong QIN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第6期1204-1217,共14页
This paper considers two estimators of θ= g(x) in a nonparametric regression model Y = g(x) + ε(x∈ (0, 1)p) with missing responses: Imputation and inverse probability weighted esti- mators. Asymptotic nor... This paper considers two estimators of θ= g(x) in a nonparametric regression model Y = g(x) + ε(x∈ (0, 1)p) with missing responses: Imputation and inverse probability weighted esti- mators. Asymptotic normality of the two estimators is established, which is used to construct normal approximation based confidence intervals on θ. 展开更多
关键词 Confidence interval missing at random nonparametric regression normal approximation.
原文传递
Detecting Difference Between Coefficients in Linear Model Using Jackknife Empirical Likelihood
4
作者 WU Xinqi ZHANG Qingzhao ZHANG Sanguo 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第2期542-556,共15页
Empirical likelihood has been found very useful in many different occasions. It usually runs into serious computational difficulties while jackknife empirical likelihood (JEL) is shown to be effective when applied t... Empirical likelihood has been found very useful in many different occasions. It usually runs into serious computational difficulties while jackknife empirical likelihood (JEL) is shown to be effective when applied to some complicated statistics. In this paper, to test the difference between coefficients of two linear regression models, the authors apply JEL to construct the confidence regions. Based on the 3EL ratio test, a version of Wilks' theorem is developed. Furthermore, to improve the coverage accuracy of confidence regions, a Bartlett correction is applied. Simulation studies are carried out to show the effectiveness of the proposed method in aspects of coverage accuracy. A real data set is analyzed with the proposed method as an example. 展开更多
关键词 Bartlett correction coverage accuracy Jackknife empirical likelihood linear regression model.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部