The woodland-steppe ecotone in the. southern Nei Mongol Plateau is located at the northern edge of the east Asian monsoon influences. A marked southeastern - northwestern (SE - NW) precipitation gradient exists in thi...The woodland-steppe ecotone in the. southern Nei Mongol Plateau is located at the northern edge of the east Asian monsoon influences. A marked southeastern - northwestern (SE - NW) precipitation gradient exists in this region. Quantitative reconstruction of palaeo-precipitation of this region is helpful to reveal the development of monsoon climate and to predict die future desertification. Based on modern vegetation and surface pollen studies, a pollen-precipitation transfer function in the study region was established. Pollen data from three sediment sequences within the ecotone were used to reconstruct palaeo-precipitation during the Holocene. The processes of precipitation changes in the three sequences were quite different. There was a tendency of precipitation declined from the onset of the Holocene to 1 100 a BP in Haoluku. But, in Liuzhouwan and Xiaoniuchang, both located south of Haoluku, the annual precipitation reached highest values during 7 800 - 6 200 a BP and 7 200 - 5 000 a BP, respectively. The influences of southwestern (SW) monsoon and the variances of topographical conditions have possibly caused these temporal-spatial variances.展开更多
[Objective] The experiment aimed to explore the influence of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation for correct assessing the influence of enhanced ultraviolet radiation-B o...[Objective] The experiment aimed to explore the influence of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation for correct assessing the influence of enhanced ultraviolet radiation-B on maize and providing scientific reference to make proper countermeasures. [ Method] The location test in field and lift lamp of UV-B were used to observe the changes of maize height, leaf area and number of green leaves under influences of different UV-B radiation. [ Result] In arid regions of middle-high elevation, enhanced ultraviolet radiation-B could dwarf maize plant, decrease leaf area, decline number of green leaves and yield. The reason of decreasing leaf area was that enhanced ultraviolet radiation-B shortened leaf length and leaf width while the reason of declining yield was that yield components were all negatively influ- enced and with the increase of ultraviolet radiation-B, the yield declined dramatically. [ Concluslonl The result of this experiment would be good for maize production in arid regions of middle-high elevation.展开更多
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes...Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.展开更多
Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and c...Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and compared and validated two methods (the MTCLIM and the modified MTCLIM) in the Qilian Mountains of Northwest China to estimate daily temperature (i.e., maximum temperature, minimum temperature) and precipitation at six weather stations from i January 2000 to 31December 2009. The algorithm of temperature in modified MTCLIM was improved by constructing the daily linear regression relationship between temperature and elevation, aspect and location information. There are two steps to modify the MTCLIM to predict daily precipitation: firstly, the linear regression relationship was built between annual average precipitation and elevation, location, and vegetation index; secondly, the distance weight for measuring the contribution of each weather station on target point was improved by average wind direction during the rainy season. Several regression analysis and goodness-of-fit indices (i.e., Pearson's correlation coefficient, coefficient of determination, mean absolute error, root-mean-square error and modelingefficiency) were used to validate these estimated values. The result showed that the modified MTCLIM had a better performance than the MTCLIM. Therefore, the modified MTCLIM was used to map daily meteorological data in the study area from 2000 to 2009. These results were validated using weather stations with short time data and the predicted accuracy was acceptable. The meteorological data mapped could become inputs for distributed hydrological and ecological models applied in the Qilian Mountains.展开更多
We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in t...We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons(April-October),but weakly positive or negative trends for the cold seasons(November-March). It was found that these changes correspond to the decreasing contribution of "Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and East zonal(Nm-Ez)" circulation groups and to the increasing contribution of "West zonal and Southern meridional(Wz-Sm)" circulation groups,accordingly to the Dzerdzeevskii classification. In addition,it was found that the variation of precipitation has a step change point in 1980. For the warm seasons,the precipitation change at this point is associated with the reduced influence of "West zonal(Wz)","Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and Southern meridional(Nm-Sm)" circulation groups. For the cold seasons,a substantialincrease of "Wz-Sm" and a decrease of "Nm-Sa","Nm-Ez" circulation groups are responsible for the precipitation change in the two time periods(1959-1980 and 1981-2014).展开更多
Based on China’s monthly precipitation data from 1950 to 2000 and by using the Z-index, 4 categories of flood were estimated. Variation and change of flood in South China were analyzed in terms of percentage areas of...Based on China’s monthly precipitation data from 1950 to 2000 and by using the Z-index, 4 categories of flood were estimated. Variation and change of flood in South China were analyzed in terms of percentage areas of flood. This study reveals that flood areas in South China had a slightly decreasing trend in the latest 50 years. During the winter half year, however, it displayed an increasing trend, especially since the 1990’s. It is also found that flood areas decreased during the summer half year from April to September, but increased during summer, especially since the 1990’s. In the annually first season of precipitation, the flood area has a decreasing trend, but it has a strongly increasing trend in the annually second season. The gradual wet trend during the winter-half year results in wetter climate condition for South China, which will be more favorable for spreading some of the epidemic pathogenic bacterium, crop diseases and insect pests.展开更多
Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Tw...Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent traits. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be ex- amined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.展开更多
The characteristics of zonal anomaly and change rule of temporal distribution of annual precipitation in the northeastern China are revealed in this paper with EOF (Empirical Orthogonal Function) and REOF (Rotated Emp...The characteristics of zonal anomaly and change rule of temporal distribution of annual precipitation in the northeastern China are revealed in this paper with EOF (Empirical Orthogonal Function) and REOF (Rotated Empirical Orthogonal Function) methods and results are drawn in the standard relief maps with GIS technology for practical application. Data used in the study were obtained from 208 meteorological stations over the northeastern China from 1961 to 2001. EOF results show that the first 3 loading vectors could give entire spatial anomaly structure of annual precipitation. In the Northeast Plain including the Songneng Plain and the Liaohe Plain, there is a regional compatibility (whether wet or dry) of annual precipitation change and this precipitation pattern has occurred since the late 1980s to the present. There also exist annual precipitation patterns of wet (or dry) in south and dry (or wet) in north and wet (or dry) in east and dry (or wet) in west. REOF results display 8 principal precipitation anomaly areas by the first 8 rotated loading vectors: the west plain, the Liaodong hills, the Sanjiang Plain, the Liaoxi hills, the Changbai Mountains, the Hulun Buir Plateau, the southwest plateau and the Liaodong Peninsula.展开更多
With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions ...With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.展开更多
In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Prec...In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.展开更多
A new available dataset of daily observational precipitation is used to study the temporal and spatial variability of extreme precipitation events for 1956-2008 in the ten large river basins of China. The maximum dail...A new available dataset of daily observational precipitation is used to study the temporal and spatial variability of extreme precipitation events for 1956-2008 in the ten large river basins of China. The maximum daily rainfall and heavy precipitation days (≥50 mm d^-1) are analyzed for the basins of the Songhua River, Liaohe River, Haihe River, Yellow River, Northwest China Rivers, Huaihe River, Yangtze River, Pearl River, Southeast China Rivers, and Southwest China Rivers. The results indicate that the maximum daily rainfall was increasing in southern river basins, while it was decreasing in northern river basins, which leads to no discernible increasing or decreasing trend in the maximum daily rainfall of whole China,especially 2001. The national averaged heavy precipitation days shows an insignificant increase. However, a rise in heavy precipitation days of southern river basins and a decline of northern river basins are observed.展开更多
Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for a...Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.展开更多
Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and huma...Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and human activities. The flood center shifted from North China and the Yangtze-Huaihe basin in the 1950s towards the south, north and west of China, and located in the south of the Yangtze River and South China after the 1990s. The FA in the western provinces was continuously on the rise since the 1950s. There are two characteristics for the future flood pattem in China. The pattern of "flood in the south and drought in the north" depends on the north-south shift of the maximum rainfall region in eastern China. The flood intensification to the west of Hu Huanyong's line mainly results from the increase of rainfall, extreme precipitation and the melting of glaciers under the background of human activity magnification.展开更多
Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climat...Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climate parameters,a set of mean precipitation,wet day frequency,and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21 st century.Meanwhile the return values of precipitation intensity with an average return of 5,10,20,and 50 years are also used to assess the expected changes in precipitation extremes events in this study.The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5.The annual,spring and winter average precipitation decreases while the summer and autumn average precipitation increases.The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase.The wet day percentiles(q90 and q95) also increase,indicating that precipitation extremes intensity will increase in the future.Meanwhile,the5-year return value tends to increase by 30%-45%in the basins of Liujiang River,Red Water River,Guihe River and Pearl River Delta region,where the 5-year return value of future climate corresponds to the 8-to 10-year return value of the present climate,and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080 s under RCP8.5,which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events.展开更多
1 INTRODUCTION Locating between the southern temperate climate zone and northern subtropical climate zone, the basin of Huaihe River witnesses frequent occurrence of meteorological disasters, especially from May to Au...1 INTRODUCTION Locating between the southern temperate climate zone and northern subtropical climate zone, the basin of Huaihe River witnesses frequent occurrence of meteorological disasters, especially from May to August when heavy rains usually result in floods. There has been much research at home and abroad on the estimation of rainfall based on radar data and satellite imagery . Experiments on heavy rains are mainly, however, based on Type 713 weather radar, which limits quantitative estimation of rainfall. With data from a Doppler weather radar on the S band (CINRAD/SA) co-manufactured by China and U.S.A. in 1999, this work makes quantitative estimation of rainfall over the Anhui region in the Huaihe River valley, supplemented with GMS satellite data, records from weather stations and automatic rain gauges. A localized model and set of indices have been set up to utilize the CINRAD/SA radar and GMS satellite, flood-causing heavy rains are pre-warned and forecast with interpretations of the NWP product HLAFS, and a software ofpre-warning operation is finalized to watch this kind of rain over the valley.展开更多
This study has examined the temporal variation in monthly, seasonal & annual precipitation over the Western Himalayan Region(WHR) and the influence of global teleconnections, like the North Atlantic Oscillation(NA...This study has examined the temporal variation in monthly, seasonal & annual precipitation over the Western Himalayan Region(WHR) and the influence of global teleconnections, like the North Atlantic Oscillation(NAO) and Southern Oscillation(SO) Indices on seasonal & annual precipitation. The Mann–Kendall non-parametric test is applied for trend detection and the Pettitt–Mann–Whitney test is used to detect possible shift. Maximum entropy spectral analysis is applied to find the periodicity in annual & seasonal precipitation. The study shows a non-significant decreasing trend in annual precipitation over WHR for the period 1857-2006. However, in seasonal precipitation, a significant decreasing trend is observed in monsoon and a significant increasing trend in post-monsoon season during the same period. The significant decrease in monsoon precipitation may be due to weakening of its teleconnection with NAO as well as SO Indices mainly during last three decades. It is observed that the probable change of year in annual & monsoon precipitation over WHR is 1979. The study also shows significant periodicities of 2.3-2.9 years and of 3.9-4.7 years in annual & seasonal precipitation over WHR.展开更多
Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4...Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4 ℃, and further compares the differences between 1.5 ℃ and 2 ℃ targets. Results show that relative to the pre-industrial era, the mean temperature over Asia increases by 2.3 ℃, 3.0 ℃, 4.6 ℃, and 6.0 ℃ at warming targets of 1.5 ℃, 2 ℃, 3 ℃, and 4 ℃, respectively, with stronger warming in high latitudes than in low latitudes. The corresponding enhancement in mean precipitation over the entire Asian region is 4.4%, 5.8%, 10.2%, and 13.0%, with significant regional differences. In addition, an increase in warm extremes, a decrease in cold extremes, and a strengthening in the variability of amounts of extreme precipitation are projected. Under the 1.5 ℃ target, compared with the climate under the 2 ℃ target, the mean temperature will be lower by 0.5-1 ℃ over Asia; the mean precipitation will be less by 5%-20% over most of Asia, but will be greater by about 10%-15% over West Asia and western South Asia; extreme high temperatures will be uniformly cooler throughout the Asian region, and the warming in extreme low temperatures will decrease significantly in high latitudes of Asia; extreme precipitation will be weaker over most of Asia but will be stronger over West Asia and western South Asia. Under the 1.5 ℃ and 2 ℃ warming targets, the probability of very hot weather (anomalies greater than 1σ, σ is standard deviation), extremely hot weather (anomalies greater than 3or), and extremely heavy precipitation (anomalies greater than 3σ) occurring will increase by at least once, 10%, and 10%, respectively, compared to the reference period (1861-1900).展开更多
文摘The woodland-steppe ecotone in the. southern Nei Mongol Plateau is located at the northern edge of the east Asian monsoon influences. A marked southeastern - northwestern (SE - NW) precipitation gradient exists in this region. Quantitative reconstruction of palaeo-precipitation of this region is helpful to reveal the development of monsoon climate and to predict die future desertification. Based on modern vegetation and surface pollen studies, a pollen-precipitation transfer function in the study region was established. Pollen data from three sediment sequences within the ecotone were used to reconstruct palaeo-precipitation during the Holocene. The processes of precipitation changes in the three sequences were quite different. There was a tendency of precipitation declined from the onset of the Holocene to 1 100 a BP in Haoluku. But, in Liuzhouwan and Xiaoniuchang, both located south of Haoluku, the annual precipitation reached highest values during 7 800 - 6 200 a BP and 7 200 - 5 000 a BP, respectively. The influences of southwestern (SW) monsoon and the variances of topographical conditions have possibly caused these temporal-spatial variances.
基金Supported by Natural Science Foundation of Ningxia Autonomous Re-gion(A1012)~~
文摘[Objective] The experiment aimed to explore the influence of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation for correct assessing the influence of enhanced ultraviolet radiation-B on maize and providing scientific reference to make proper countermeasures. [ Method] The location test in field and lift lamp of UV-B were used to observe the changes of maize height, leaf area and number of green leaves under influences of different UV-B radiation. [ Result] In arid regions of middle-high elevation, enhanced ultraviolet radiation-B could dwarf maize plant, decrease leaf area, decline number of green leaves and yield. The reason of decreasing leaf area was that enhanced ultraviolet radiation-B shortened leaf length and leaf width while the reason of declining yield was that yield components were all negatively influ- enced and with the increase of ultraviolet radiation-B, the yield declined dramatically. [ Concluslonl The result of this experiment would be good for maize production in arid regions of middle-high elevation.
基金This paper was supported by Chinese 863 Plan Water-Saving Agriculture (2002AA2Z4321),the Key Knowledge Innovation Project (SCXZY0103) and The Tenth-five Plan of Liaoning Province (2001212001).
文摘Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.
基金supported by National Natural Science Foundation of China (Grant Nos.91025015,51178209)
文摘Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and compared and validated two methods (the MTCLIM and the modified MTCLIM) in the Qilian Mountains of Northwest China to estimate daily temperature (i.e., maximum temperature, minimum temperature) and precipitation at six weather stations from i January 2000 to 31December 2009. The algorithm of temperature in modified MTCLIM was improved by constructing the daily linear regression relationship between temperature and elevation, aspect and location information. There are two steps to modify the MTCLIM to predict daily precipitation: firstly, the linear regression relationship was built between annual average precipitation and elevation, location, and vegetation index; secondly, the distance weight for measuring the contribution of each weather station on target point was improved by average wind direction during the rainy season. Several regression analysis and goodness-of-fit indices (i.e., Pearson's correlation coefficient, coefficient of determination, mean absolute error, root-mean-square error and modelingefficiency) were used to validate these estimated values. The result showed that the modified MTCLIM had a better performance than the MTCLIM. Therefore, the modified MTCLIM was used to map daily meteorological data in the study area from 2000 to 2009. These results were validated using weather stations with short time data and the predicted accuracy was acceptable. The meteorological data mapped could become inputs for distributed hydrological and ecological models applied in the Qilian Mountains.
基金supported by RFBR according to the research project No.16-35-00188 mol_aproject“Climatic and ecological changes in Siberia by the data on glacio-chemical,diatomic and sporepollen analysis of ice-cores”(No.0383-2014-0005)
文摘We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons(April-October),but weakly positive or negative trends for the cold seasons(November-March). It was found that these changes correspond to the decreasing contribution of "Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and East zonal(Nm-Ez)" circulation groups and to the increasing contribution of "West zonal and Southern meridional(Wz-Sm)" circulation groups,accordingly to the Dzerdzeevskii classification. In addition,it was found that the variation of precipitation has a step change point in 1980. For the warm seasons,the precipitation change at this point is associated with the reduced influence of "West zonal(Wz)","Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and Southern meridional(Nm-Sm)" circulation groups. For the cold seasons,a substantialincrease of "Wz-Sm" and a decrease of "Nm-Sa","Nm-Ez" circulation groups are responsible for the precipitation change in the two time periods(1959-1980 and 1981-2014).
基金Project "Statistics of drought in China since 1950 and analysis of its characteristics"(SZ2003C-04)
文摘Based on China’s monthly precipitation data from 1950 to 2000 and by using the Z-index, 4 categories of flood were estimated. Variation and change of flood in South China were analyzed in terms of percentage areas of flood. This study reveals that flood areas in South China had a slightly decreasing trend in the latest 50 years. During the winter half year, however, it displayed an increasing trend, especially since the 1990’s. It is also found that flood areas decreased during the summer half year from April to September, but increased during summer, especially since the 1990’s. In the annually first season of precipitation, the flood area has a decreasing trend, but it has a strongly increasing trend in the annually second season. The gradual wet trend during the winter-half year results in wetter climate condition for South China, which will be more favorable for spreading some of the epidemic pathogenic bacterium, crop diseases and insect pests.
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues of Chinese Academy of Sciences(No.XDA05050503)National Key Technology Research and Development Program of China(No.2013BAD11B00)National Natural Science Foundation of China(No.41301242)
文摘Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent traits. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be ex- amined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.
文摘The characteristics of zonal anomaly and change rule of temporal distribution of annual precipitation in the northeastern China are revealed in this paper with EOF (Empirical Orthogonal Function) and REOF (Rotated Empirical Orthogonal Function) methods and results are drawn in the standard relief maps with GIS technology for practical application. Data used in the study were obtained from 208 meteorological stations over the northeastern China from 1961 to 2001. EOF results show that the first 3 loading vectors could give entire spatial anomaly structure of annual precipitation. In the Northeast Plain including the Songneng Plain and the Liaohe Plain, there is a regional compatibility (whether wet or dry) of annual precipitation change and this precipitation pattern has occurred since the late 1980s to the present. There also exist annual precipitation patterns of wet (or dry) in south and dry (or wet) in north and wet (or dry) in east and dry (or wet) in west. REOF results display 8 principal precipitation anomaly areas by the first 8 rotated loading vectors: the west plain, the Liaodong hills, the Sanjiang Plain, the Liaoxi hills, the Changbai Mountains, the Hulun Buir Plateau, the southwest plateau and the Liaodong Peninsula.
基金supported primarily by the National Basic Research Program of China (2013CBA01806)the National Natural Sciences Foundation of China (41671029, 41690141, 41401040 and 41501040)
文摘With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.
基金National Natural Science Foundation of China,No.40830636 No.40671034Foundation of Isotopes in Precipitation of Chinese Ecosystem Research Network
文摘In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.
基金supported by the Ministry of Water Resource of China(GYHY200801001)National Key Technologies R&D Program(2007BAC29B02 and 2007BAC29B05)+2 种基金National Basic Research Program (2010CB428401)Ministry of Science and Technology of China(2010DFA21340)and China Meteorological Administration(540000G010C01)
文摘A new available dataset of daily observational precipitation is used to study the temporal and spatial variability of extreme precipitation events for 1956-2008 in the ten large river basins of China. The maximum daily rainfall and heavy precipitation days (≥50 mm d^-1) are analyzed for the basins of the Songhua River, Liaohe River, Haihe River, Yellow River, Northwest China Rivers, Huaihe River, Yangtze River, Pearl River, Southeast China Rivers, and Southwest China Rivers. The results indicate that the maximum daily rainfall was increasing in southern river basins, while it was decreasing in northern river basins, which leads to no discernible increasing or decreasing trend in the maximum daily rainfall of whole China,especially 2001. The national averaged heavy precipitation days shows an insignificant increase. However, a rise in heavy precipitation days of southern river basins and a decline of northern river basins are observed.
基金supported by the"Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences(Grant No. XDA05090306)the National Basic Research Programof China(Grant No.2009CB421406)the Chinese Academy of Sciences-Common wealth Scientific and Industrial Research Organisation Cooperative Research Program(Grant No.GJHZ1223)
文摘Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.
基金funded by the key program of National Natural Science Foundation of China (Grant No.40730635)Commonweal and Specialized Program for Scientific Research,Ministry of Water Resources of China (Grant No.2007011024)
文摘Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and human activities. The flood center shifted from North China and the Yangtze-Huaihe basin in the 1950s towards the south, north and west of China, and located in the south of the Yangtze River and South China after the 1990s. The FA in the western provinces was continuously on the rise since the 1950s. There are two characteristics for the future flood pattem in China. The pattern of "flood in the south and drought in the north" depends on the north-south shift of the maximum rainfall region in eastern China. The flood intensification to the west of Hu Huanyong's line mainly results from the increase of rainfall, extreme precipitation and the melting of glaciers under the background of human activity magnification.
基金Specialized Research Project for Public Welfare Industries(Meteorology)from the Ministry of Science and Technology(GYHY201406025)Specialized Project for Climate Change from China Meteorological Administration(CCSF201404,CCSF2011-25,CCSF201211CCSF 2011-25)+2 种基金Specialized Foundation for Low Carbon Development in Guangdong Province(2012-019)Foundation of Science Innovation Teams for Guangdong Meteorological Bureau(201102)Science and Technology Planning Project for Guangdong Province(2012A061400012)
文摘Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climate parameters,a set of mean precipitation,wet day frequency,and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21 st century.Meanwhile the return values of precipitation intensity with an average return of 5,10,20,and 50 years are also used to assess the expected changes in precipitation extremes events in this study.The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5.The annual,spring and winter average precipitation decreases while the summer and autumn average precipitation increases.The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase.The wet day percentiles(q90 and q95) also increase,indicating that precipitation extremes intensity will increase in the future.Meanwhile,the5-year return value tends to increase by 30%-45%in the basins of Liujiang River,Red Water River,Guihe River and Pearl River Delta region,where the 5-year return value of future climate corresponds to the 8-to 10-year return value of the present climate,and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080 s under RCP8.5,which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events.
基金Research on Floods-Causing Heavy Rains Based on CINRAD/SA, a public wellbeing projectfrom the Ministry of Science and Technology (2000 DIB20103)
文摘1 INTRODUCTION Locating between the southern temperate climate zone and northern subtropical climate zone, the basin of Huaihe River witnesses frequent occurrence of meteorological disasters, especially from May to August when heavy rains usually result in floods. There has been much research at home and abroad on the estimation of rainfall based on radar data and satellite imagery . Experiments on heavy rains are mainly, however, based on Type 713 weather radar, which limits quantitative estimation of rainfall. With data from a Doppler weather radar on the S band (CINRAD/SA) co-manufactured by China and U.S.A. in 1999, this work makes quantitative estimation of rainfall over the Anhui region in the Huaihe River valley, supplemented with GMS satellite data, records from weather stations and automatic rain gauges. A localized model and set of indices have been set up to utilize the CINRAD/SA radar and GMS satellite, flood-causing heavy rains are pre-warned and forecast with interpretations of the NWP product HLAFS, and a software ofpre-warning operation is finalized to watch this kind of rain over the valley.
文摘This study has examined the temporal variation in monthly, seasonal & annual precipitation over the Western Himalayan Region(WHR) and the influence of global teleconnections, like the North Atlantic Oscillation(NAO) and Southern Oscillation(SO) Indices on seasonal & annual precipitation. The Mann–Kendall non-parametric test is applied for trend detection and the Pettitt–Mann–Whitney test is used to detect possible shift. Maximum entropy spectral analysis is applied to find the periodicity in annual & seasonal precipitation. The study shows a non-significant decreasing trend in annual precipitation over WHR for the period 1857-2006. However, in seasonal precipitation, a significant decreasing trend is observed in monsoon and a significant increasing trend in post-monsoon season during the same period. The significant decrease in monsoon precipitation may be due to weakening of its teleconnection with NAO as well as SO Indices mainly during last three decades. It is observed that the probable change of year in annual & monsoon precipitation over WHR is 1979. The study also shows significant periodicities of 2.3-2.9 years and of 3.9-4.7 years in annual & seasonal precipitation over WHR.
基金Acknowledgments This research was jointly supported by the National Key Research and Development Program of China (2016YFA0600701), the National Natural Science Foundation of China (41675069), and the Climate Change Specific Fund of China (CCSF201731).
文摘Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4 ℃, and further compares the differences between 1.5 ℃ and 2 ℃ targets. Results show that relative to the pre-industrial era, the mean temperature over Asia increases by 2.3 ℃, 3.0 ℃, 4.6 ℃, and 6.0 ℃ at warming targets of 1.5 ℃, 2 ℃, 3 ℃, and 4 ℃, respectively, with stronger warming in high latitudes than in low latitudes. The corresponding enhancement in mean precipitation over the entire Asian region is 4.4%, 5.8%, 10.2%, and 13.0%, with significant regional differences. In addition, an increase in warm extremes, a decrease in cold extremes, and a strengthening in the variability of amounts of extreme precipitation are projected. Under the 1.5 ℃ target, compared with the climate under the 2 ℃ target, the mean temperature will be lower by 0.5-1 ℃ over Asia; the mean precipitation will be less by 5%-20% over most of Asia, but will be greater by about 10%-15% over West Asia and western South Asia; extreme high temperatures will be uniformly cooler throughout the Asian region, and the warming in extreme low temperatures will decrease significantly in high latitudes of Asia; extreme precipitation will be weaker over most of Asia but will be stronger over West Asia and western South Asia. Under the 1.5 ℃ and 2 ℃ warming targets, the probability of very hot weather (anomalies greater than 1σ, σ is standard deviation), extremely hot weather (anomalies greater than 3or), and extremely heavy precipitation (anomalies greater than 3σ) occurring will increase by at least once, 10%, and 10%, respectively, compared to the reference period (1861-1900).