期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
医学信息生五层阶梯式实战能力培养模式研究 被引量:1
1
作者 解丹 程茜 杨帆 《创新教育研究》 2014年第4期49-53,共5页
为加强医学信息生医学数据处理实战能力的培养,现提出三阶段“五层阶梯式实战能力培养模式”,从“理论 + 实践、课内 + 课外、教学 + 科研、老师 + 医生、学校 + 医院”五个层面进行融合。第一阶段在学校进行培养,其教学环节主要有课堂... 为加强医学信息生医学数据处理实战能力的培养,现提出三阶段“五层阶梯式实战能力培养模式”,从“理论 + 实践、课内 + 课外、教学 + 科研、老师 + 医生、学校 + 医院”五个层面进行融合。第一阶段在学校进行培养,其教学环节主要有课堂讲授、课堂实验和课堂实训,第二阶段由学校与医院联合进行综合实践,第三阶段在医院进行项目实战,全程有教师指导及专业实验室作支撑,可得到医护人员的直接指导。运用该培养模式对2009级和2010级二届医学信息工程专业学生进行实际培养,培养效果证实了该培养模式的科学性和有效性。 展开更多
关键词 医学信息生 医学数据处理 实战能力 培养模式
下载PDF
Speckle Reduction Based on Contourlet Transform Using Scale Adaptive Threshold for Medical Ultrasound Image 被引量:1
2
作者 宋晓阳 陈亚珠 +1 位作者 张素 阳维 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第5期553-558,共6页
A new speckle suppression method in contourlet domain was presented. By modeling the subband contourlet coefficients of the ultrasound images after logarithmic transform as generalized Gaussian distribution (GGD), we ... A new speckle suppression method in contourlet domain was presented. By modeling the subband contourlet coefficients of the ultrasound images after logarithmic transform as generalized Gaussian distribution (GGD), we gave a scale-adaptive threshold in Bayesian framework. Experimental results of both synthetic and clinical ultrasound images show that our method has a better performance on speckle suppressing than the wavelet-based method while well preserving the feature details. 展开更多
关键词 contourlet transform speckle reduction ultrasound image generalized Gaussian distribution(GGD)
原文传递
Sequence Length Limits for Controlling False Positives in Discovering Nucleotide Sequence Motifs
3
作者 陈蕾 钱自亮 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第5期635-640,共6页
In the study of motif discovery, especially the transcription factor DNA binding sites discovery, a too long input sequence would return non-informative motifs rather than those biological functional motifs. This pape... In the study of motif discovery, especially the transcription factor DNA binding sites discovery, a too long input sequence would return non-informative motifs rather than those biological functional motifs. This paper gave theoretical analyses and computational experiments to suggest the length limits of the input sequence. When the sequence length exceeds a certain critical point, the probability of discovering the motif decreases sharply. The work not only gave an explanation on the unsatisfying results of the existed motif discovery problems that the input sequence length might be too long and exceed the point, but also provided an estimation of input sequence length we should accept to get more meaningful and reliable results in motif discovery. 展开更多
关键词 sequence motifs noise sequence sequence length S-CURVE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部