Objective: The aim of our study was to investigate the early outcome of the taxotere and cisplatin chemora- diotherapy to the advanced cervical cancer. Methods: Fifty-six cases with cervical cancer (FIGO lib to IVa...Objective: The aim of our study was to investigate the early outcome of the taxotere and cisplatin chemora- diotherapy to the advanced cervical cancer. Methods: Fifty-six cases with cervical cancer (FIGO lib to IVa) were divided randomly into two groups in the oncology hospital of Jingzhou from September 2009 to October 2010, radiotherapy alone (28 cases) and radiation plus chemotherapy (TP) group. There was no difference of radiotherapy between the two groups, the RT + C cases who accepted TP regimen during the radiation, and DDP once weekly injection of vain, according to 20 mg/m2 and taxotere once weekly i.v. according to 35 mg/m2. These regimen were given for 4-5 weeks, and some medicine for vomit- ing was given to the RT + C cases. Two groups were received an oral medicine MA 160 mg every day during the treatment. Results: The early outcome: the complete remission rate was 64.3% and partial remission rate was 35.7% in RT + C. The complete remission rate was 32.1% and partial remission rate was 39.3% in RT. The total response rate and complete remis- sion of RT + C group was higher than that of the RT group. There was significant difference between the two groups. In RT + C group, 1-year survive rate was 100.00% (28/28); in RT group, 1-year survive rate was 85.71% (24/28). There was significant difference between the two groups (X2 = 4.31 〉 3.84, P 〈 0.05). Conclusion: The taxotere and cisplatin chemoradiotherapy can improve the early outcome of the advanced cervical cancer, and the adverse effect are raised, but that can be endured.展开更多
Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstruct...Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity,the signal becomes nonlinear and the pressure response range gets much narrower,significantly limiting the applications of flexible pressure sensors.Here,we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode,for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range.The micropillars undergo three stages of deformation upon loading:initial contact(0-6 k Pa)and structure buckling(6-12 k Pa)that exhibit a low and nonlinear response,as well as a post-buckling stage that has a high signal linearity with high sensitivity(33.16 k Pa-1)over a broad pressure range of 12-176 k Pa.The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface.Our sensor has been applied in pulse detection,plantar pressure mapping,and grasp task of an artificial limb.This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors,which are potentially useful in intelligent robots and health monitoring.展开更多
文摘Objective: The aim of our study was to investigate the early outcome of the taxotere and cisplatin chemora- diotherapy to the advanced cervical cancer. Methods: Fifty-six cases with cervical cancer (FIGO lib to IVa) were divided randomly into two groups in the oncology hospital of Jingzhou from September 2009 to October 2010, radiotherapy alone (28 cases) and radiation plus chemotherapy (TP) group. There was no difference of radiotherapy between the two groups, the RT + C cases who accepted TP regimen during the radiation, and DDP once weekly injection of vain, according to 20 mg/m2 and taxotere once weekly i.v. according to 35 mg/m2. These regimen were given for 4-5 weeks, and some medicine for vomit- ing was given to the RT + C cases. Two groups were received an oral medicine MA 160 mg every day during the treatment. Results: The early outcome: the complete remission rate was 64.3% and partial remission rate was 35.7% in RT + C. The complete remission rate was 32.1% and partial remission rate was 39.3% in RT. The total response rate and complete remis- sion of RT + C group was higher than that of the RT group. There was significant difference between the two groups. In RT + C group, 1-year survive rate was 100.00% (28/28); in RT group, 1-year survive rate was 85.71% (24/28). There was significant difference between the two groups (X2 = 4.31 〉 3.84, P 〈 0.05). Conclusion: The taxotere and cisplatin chemoradiotherapy can improve the early outcome of the advanced cervical cancer, and the adverse effect are raised, but that can be endured.
基金supported by the Science Technology and Innovation Committee of Shenzhen Municipality(JCYJ20170817111714314)the National Natural Science Foundation of China(52073138 and 51771089)+2 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06G587)the Shenzhen Sci-Tech Fund(KYTDPT20181011104007)the Tencent Robotics X Lab Rhino-Bird Focused Research Program(JR201984)。
文摘Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity,the signal becomes nonlinear and the pressure response range gets much narrower,significantly limiting the applications of flexible pressure sensors.Here,we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode,for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range.The micropillars undergo three stages of deformation upon loading:initial contact(0-6 k Pa)and structure buckling(6-12 k Pa)that exhibit a low and nonlinear response,as well as a post-buckling stage that has a high signal linearity with high sensitivity(33.16 k Pa-1)over a broad pressure range of 12-176 k Pa.The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface.Our sensor has been applied in pulse detection,plantar pressure mapping,and grasp task of an artificial limb.This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors,which are potentially useful in intelligent robots and health monitoring.