由于皮肤黑色素癌图像存在类内差异大、样本数据集小等特点,采用深度残差网络可以有效解决训练过程中过拟合问题,提高识别准确率.但是深度残差网络模型的训练参数多,时间复杂度高.为了提高训练效率,提高识别准确率,首先从理论上分析了...由于皮肤黑色素癌图像存在类内差异大、样本数据集小等特点,采用深度残差网络可以有效解决训练过程中过拟合问题,提高识别准确率.但是深度残差网络模型的训练参数多,时间复杂度高.为了提高训练效率,提高识别准确率,首先从理论上分析了深度残差网络模型的结构,通过修改网络结构,利用Inception结构代替残差网络中的卷积层、池化层,减少模型的训练参数数量,降低时间复杂度.在此基础上,提出了基于Inception深度残差网络皮肤黑色素癌分类识别算法(Inception Deep Residual Network,IDRN),用Inception结构代替残差网络中的卷积池化层,用SeLU激活函数代替传统的ReLU函数.之后,在公开的黑色素癌皮肤镜图像ISIC2017数据集上进行实验验证.理论和实验表明,与传统的卷积神经网络ResNet50相比,本文提出的新的分类算法降低了时间复杂度,提高了识别准确率.展开更多
文摘由于皮肤黑色素癌图像存在类内差异大、样本数据集小等特点,采用深度残差网络可以有效解决训练过程中过拟合问题,提高识别准确率.但是深度残差网络模型的训练参数多,时间复杂度高.为了提高训练效率,提高识别准确率,首先从理论上分析了深度残差网络模型的结构,通过修改网络结构,利用Inception结构代替残差网络中的卷积层、池化层,减少模型的训练参数数量,降低时间复杂度.在此基础上,提出了基于Inception深度残差网络皮肤黑色素癌分类识别算法(Inception Deep Residual Network,IDRN),用Inception结构代替残差网络中的卷积池化层,用SeLU激活函数代替传统的ReLU函数.之后,在公开的黑色素癌皮肤镜图像ISIC2017数据集上进行实验验证.理论和实验表明,与传统的卷积神经网络ResNet50相比,本文提出的新的分类算法降低了时间复杂度,提高了识别准确率.