期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于GAN的社交网络隐私保护方法
被引量:
1
1
作者
王晓婷
王庆生
陈永乐
《计算机工程与设计》
北大核心
2023年第4期991-997,共7页
针对数据供应商发布社交网络数据时可能出现的泄露隐私问题,提出一种基于生成对抗网络的隐私保护方法(GPGAN)。采用GAN作为学习模型捕捉网络结构的随机游走,设计奖励函数指引创建包含重要信息的随机游走。提出基于游走样本的匿名图构造...
针对数据供应商发布社交网络数据时可能出现的泄露隐私问题,提出一种基于生成对抗网络的隐私保护方法(GPGAN)。采用GAN作为学习模型捕捉网络结构的随机游走,设计奖励函数指引创建包含重要信息的随机游走。提出基于游走样本的匿名图构造方法,通过添加差分隐私得到匿名概率邻接矩阵,重构社交网络图。实验结果表明,与其它图生成相比,该模型具有良好的图结构特征学习能力。通过度量评估实验验证了GPGAN可以在合理的隐私预算下保留所需的数据效用,优于当前主流的社交网络隐私保护方法。
展开更多
关键词
社交网络
生成对抗网络
差分隐私
匿名图重构
隐私度量
隐私保护
数据效用
下载PDF
职称材料
题名
基于GAN的社交网络隐私保护方法
被引量:
1
1
作者
王晓婷
王庆生
陈永乐
机构
太原理工大学信息与计算机学院
出处
《计算机工程与设计》
北大核心
2023年第4期991-997,共7页
基金
山西省重点研发计划基金项目(高新技术领域)(201903D121121)。
文摘
针对数据供应商发布社交网络数据时可能出现的泄露隐私问题,提出一种基于生成对抗网络的隐私保护方法(GPGAN)。采用GAN作为学习模型捕捉网络结构的随机游走,设计奖励函数指引创建包含重要信息的随机游走。提出基于游走样本的匿名图构造方法,通过添加差分隐私得到匿名概率邻接矩阵,重构社交网络图。实验结果表明,与其它图生成相比,该模型具有良好的图结构特征学习能力。通过度量评估实验验证了GPGAN可以在合理的隐私预算下保留所需的数据效用,优于当前主流的社交网络隐私保护方法。
关键词
社交网络
生成对抗网络
差分隐私
匿名图重构
隐私度量
隐私保护
数据效用
Keywords
social network
generative adversarial network
differential privacy
anonymous graph reconstruction
privacy mea-sures
privacy protection
data utility
分类号
TP393.08 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于GAN的社交网络隐私保护方法
王晓婷
王庆生
陈永乐
《计算机工程与设计》
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部