期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一种增强的个性化匿名隐私保护模型改进 被引量:2
1
作者 王雅萌 陈力 王慧 《现代电子技术》 北大核心 2017年第22期36-38,41,共4页
隐私保护是信息安全的重要研究方向,为了提高隐私保护能力,提出一种基于椭圆曲线同态加密的增强性个性化匿名隐私保护模型。采用K-匿名编码方法进行隐私保护信息的编码设计,构建加密密钥,结合分段线性混沌映射方法进行隐私保护模型的算... 隐私保护是信息安全的重要研究方向,为了提高隐私保护能力,提出一种基于椭圆曲线同态加密的增强性个性化匿名隐私保护模型。采用K-匿名编码方法进行隐私保护信息的编码设计,构建加密密钥,结合分段线性混沌映射方法进行隐私保护模型的算术编码设计,采用椭圆曲线同态加密算法进行个性化匿名隐私保护增强设计,提高信息加密的深度,实现隐私保护优化。仿真结果表明,采用该方法进行隐私保护信息加密和隐私保护抗攻击能力较强,信息泄露的风险大大降低。 展开更多
关键词 编码设计 匿名隐私保护 信息加密 信息安全
下载PDF
一种遗传算法实现的图聚类匿名隐私保护方法 被引量:12
2
作者 姜火文 曾国荪 胡克坤 《计算机研究与发展》 EI CSCD 北大核心 2016年第10期2354-2364,共11页
聚类匿名是一种典型的社交网数据发布隐私保护方案,其基础工作是图聚类.图聚类为一类NP难的组合优化问题,便于使用搜索优化算法.现有图聚类匿名方法缺少此类启发式搜索算法.为此,研究一种利用遗传算法实现的图聚类匿名方法,利用贪心法... 聚类匿名是一种典型的社交网数据发布隐私保护方案,其基础工作是图聚类.图聚类为一类NP难的组合优化问题,便于使用搜索优化算法.现有图聚类匿名方法缺少此类启发式搜索算法.为此,研究一种利用遗传算法实现的图聚类匿名方法,利用贪心法进行结点聚类预划分,以构造初始种群;依据关系拟合理论建立个体适应度函数;根据个体编码特点,分别提出一种多点错位的交叉算子和基因位交换的变异算子.图聚类模型综合考虑了结点的结构和属性信息,而遗传算法的全局化搜索优化能力保障了图聚类质量,因此,该方法具有较强的隐私保护性.实验表明了该方法在提高聚类质量和减小信息损失方面的有效性. 展开更多
关键词 社交网络 图聚类 隐私保护匿名 遗传算法
下载PDF
基于K匿名隐私保护模型的卡口车牌识别数据 脱敏技术研究
3
作者 罗东华 《交通科技与管理》 2021年第2期75-76,共2页
在公安交通管理领域,卡口车牌识别数据包含信息量齐全、准确,受到广泛地采用,但是该数据在使用过程中也容易造成个人隐私信息泄露。为研究研究卡口车牌识别数据中的隐私披露风险,减少卡口车牌数据在使用过车中造成的信息泄露,本文基于K... 在公安交通管理领域,卡口车牌识别数据包含信息量齐全、准确,受到广泛地采用,但是该数据在使用过程中也容易造成个人隐私信息泄露。为研究研究卡口车牌识别数据中的隐私披露风险,减少卡口车牌数据在使用过车中造成的信息泄露,本文基于K匿名隐私保护模型,对卡口车牌识别数据中的隐私泄露风险进行分析和研究,提出常用脱敏手段和方法。并以广州市卡口车牌识别数据作为实例进行分析计算,提出具体的数据脱敏措施,在分析计算中发现:时间分辨率与的隐私保护程度成正比,而与信息保存率成反比。在本文的结尾提出了该算法存在的不足,并指明未来进一步深入研究的方向。本文对相关领域人员进行数据脱敏研究具有一定的借鉴意义。 展开更多
关键词 交通管理数据 卡口车牌 数据脱敏 匿名隐私保护 时间分辨率
下载PDF
基于局部聚类和杂度增益的数据信息隐私保护方法探讨
4
作者 孙通源 《数字通信世界》 2013年第11期54-57,共4页
近年来,隐私保护的数据挖掘已逐渐成为数据挖掘研究的热点。用户个人信息的隐私保护是其中的重要问题之一。针对已有隐私保护方法匿名效果不理想,信息损失程度高聚集查询精度低等不足,在"alpha,k"隐私保护模型基础上,结合局... 近年来,隐私保护的数据挖掘已逐渐成为数据挖掘研究的热点。用户个人信息的隐私保护是其中的重要问题之一。针对已有隐私保护方法匿名效果不理想,信息损失程度高聚集查询精度低等不足,在"alpha,k"隐私保护模型基础上,结合局部聚类和杂度增益方法,本文尝试提出了一种改进原有方法的数据隐私保护方法"alpha+"。通过局部聚类和杂度增益这两种数据集处理方法代替原有数据概化过程,使得信息损失程度得以降低,最后对比两种方法所得到的匿名数据杂度值,得到一种数据匿名性更高的方法。 展开更多
关键词 数据隐私保护k-匿名局部聚类杂度增益
下载PDF
A Sensor Anonymity Enhancement Scheme Based on Pseudonym for Clustered Wireless Sensor Network 被引量:2
5
作者 SHI Leyi FU Wenjing +2 位作者 JIA Cong LIU Xin JIA Chunfu 《China Communications》 SCIE CSCD 2014年第9期6-15,共10页
Security problem is an important issue for Wireless Sensor Network.The paper focuses on the privacy protection of WSN applications.An anonymity enhancement tactic based on pseudonym mechanism is presented for clustere... Security problem is an important issue for Wireless Sensor Network.The paper focuses on the privacy protection of WSN applications.An anonymity enhancement tactic based on pseudonym mechanism is presented for clustered Wireless Sensor Network,which provides anonymity for both the sensors within a cluster and the cluster head nodes.Simulation experiments are launched through NS2 platform to validate the anonymity performance.The theoretical analysis and empirical study imply that the proposed scheme based on pseudonym can protect the privacies of both the sensor nodes and the cluster head nodes.The work is valuable and the experimental results are convincible. 展开更多
关键词 wireless sensor network (WSN) CLUSTER ANONYMITY PRIVACY pseudonym
下载PDF
Distributed anonymous data perturbation method for privacy-preserving data mining 被引量:4
6
作者 Feng LI Jin MA Jian-hua LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第7期952-963,共12页
Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed s... Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed systems. Meanwhile, data perturbation techniques are comparatively efficient but are mainly used in centralized privacy-preserving data mining (PPDM). In this paper, we propose a light-weight anonymous data perturbation method for efficient privacy preserving in distributed data mining. We first define the privacy constraints for data perturbation based PPDM in a semi-honest distributed environment. Two protocols are proposed to address these constraints and protect data statistics and the randomization process against collusion attacks: the adaptive privacy-preserving summary protocol and the anonymous exchange protocol. Finally, a distributed data perturbation framework based on these protocols is proposed to realize distributed PPDM. Experiment results show that our approach achieves a high security level and is very efficient in a large scale distributed environment. 展开更多
关键词 Privacy-preserving data mining (PPDM) Distributed data mining Data perturbation
原文传递
Towards a respondent-preferred k_i-anonymity model
7
作者 Kok-Seng WONG Myung Ho KIM 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第9期720-731,共12页
Recently, privacy concerns about data collection have received an increasing amount of attention. In data collection process, a data collector (an agency) assumed that all respondents would be comfortable with submi... Recently, privacy concerns about data collection have received an increasing amount of attention. In data collection process, a data collector (an agency) assumed that all respondents would be comfortable with submitting their data if the published data was anonymous. We believe that this assumption is not realistic because the increase in privacy concerns causes some re- spondents to refuse participation or to submit inaccurate data to such agencies. If respondents submit inaccurate data, then the usefulness of the results from analysis of the collected data cannot be guaranteed. Furthermore, we note that the level of anonymity (i.e., k-anonymity) guaranteed by an agency cannot be verified by respondents since they generally do not have access to all of the data that is released. Therefore, we introduce the notion of ki-anonymity, where ki is the level of anonymity preferred by each respondent i. Instead of placing full trust in an agency, our solution increases respondent confidence by allowing each to decide the preferred level of protection. As such, our protocol ensures that respondents achieve their preferred kranonymity during data collection and guarantees that the collected records are genuine and useful for data analysis. 展开更多
关键词 Anonymous data collection Respondent-preferred privacy protection K-ANONYMITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部