The presence of salt has a profound effect on the size,shape and structure of sodium dodecyl sulfate(SDS)micelles.There have been a great number of experiments on SDS micelles in the presence and absence of salt to st...The presence of salt has a profound effect on the size,shape and structure of sodium dodecyl sulfate(SDS)micelles.There have been a great number of experiments on SDS micelles in the presence and absence of salt to study this complex problem.Unfortunately,it is not clear yet how electrolyte ions influence the structure of micelles.By describing the compromise between dominant mechanisms,a simplified atomic model of SDS in presence of salt has been developed and the molecular dynamics(MD)simulations of two series of systems with different concentrations of salt and charges of ion have been performed.Polydispersity of micelle size is founded at relatively high concentration of SDS and low charge of cation.Although the counter-ion pairs with head groups are formed,the transition of micelle shape is not observed because the charge of cation is not enough to neutralize the polar of micelle surface.展开更多
The sol-gel transition temperature of methylcellulose (MC) solution in the presence of sodium dodecyl sulfate (SDS) as well as the mixtures of SDS and β-cyclodextrin (β-CD) was mea- sured, and the effect of th...The sol-gel transition temperature of methylcellulose (MC) solution in the presence of sodium dodecyl sulfate (SDS) as well as the mixtures of SDS and β-cyclodextrin (β-CD) was mea- sured, and the effect of the two competing interactions, the hydrophobic interaction between SDS and MC and the inclusion interaction between SDS and β-CD, upon the sol-gel transition of MC solution was studied. It has been found that the inclusion interaction between SDS and β-CD is much greater than the hydrophobic interaction between SDS and MC. As a result, in the coexistence of SDS and β-CD, the sol-gel transition temperature of MC solution keeps the same value, independent of the concentration of SDS in solution on con- dition that the concentration of SDS is less than β-CD. Our experimental results not only suggest that the effect of SDS upon the sol-gel transition of MC solution can be screened by β-CD completely but also indicate the inclusion ratio of SDS to β-CD can be determined quantitatively by using rheological measurement. The inclusion ratio of SDS to β-CD is 1:1, which is in good agreement with the inclusion ratio of SDS to β-CD in the presence of poly(vincyl pyrrolidone) determined by the viscosity measurement but is critically different from the inclusion ratio of SDS to β-CD in the presence of the oppositely charged polyelec-trolyte by using the rheological measurement, mainly due to the reason that the mechanism of the interaction between SDS and MC is critically different from the mechanism of the interaction between SDS and the oppositely charged polyelectrolyte.展开更多
基金Supported by the Outstanding Overseas Research Team Project of the Chinese Academy of Sciences, the National Natural Science Foundation of China (20221603), and the Research Fund of Key Lab for Nanomaterials, Ministry of Education, China (2006-1).
文摘The presence of salt has a profound effect on the size,shape and structure of sodium dodecyl sulfate(SDS)micelles.There have been a great number of experiments on SDS micelles in the presence and absence of salt to study this complex problem.Unfortunately,it is not clear yet how electrolyte ions influence the structure of micelles.By describing the compromise between dominant mechanisms,a simplified atomic model of SDS in presence of salt has been developed and the molecular dynamics(MD)simulations of two series of systems with different concentrations of salt and charges of ion have been performed.Polydispersity of micelle size is founded at relatively high concentration of SDS and low charge of cation.Although the counter-ion pairs with head groups are formed,the transition of micelle shape is not observed because the charge of cation is not enough to neutralize the polar of micelle surface.
文摘The sol-gel transition temperature of methylcellulose (MC) solution in the presence of sodium dodecyl sulfate (SDS) as well as the mixtures of SDS and β-cyclodextrin (β-CD) was mea- sured, and the effect of the two competing interactions, the hydrophobic interaction between SDS and MC and the inclusion interaction between SDS and β-CD, upon the sol-gel transition of MC solution was studied. It has been found that the inclusion interaction between SDS and β-CD is much greater than the hydrophobic interaction between SDS and MC. As a result, in the coexistence of SDS and β-CD, the sol-gel transition temperature of MC solution keeps the same value, independent of the concentration of SDS in solution on con- dition that the concentration of SDS is less than β-CD. Our experimental results not only suggest that the effect of SDS upon the sol-gel transition of MC solution can be screened by β-CD completely but also indicate the inclusion ratio of SDS to β-CD can be determined quantitatively by using rheological measurement. The inclusion ratio of SDS to β-CD is 1:1, which is in good agreement with the inclusion ratio of SDS to β-CD in the presence of poly(vincyl pyrrolidone) determined by the viscosity measurement but is critically different from the inclusion ratio of SDS to β-CD in the presence of the oppositely charged polyelec-trolyte by using the rheological measurement, mainly due to the reason that the mechanism of the interaction between SDS and MC is critically different from the mechanism of the interaction between SDS and the oppositely charged polyelectrolyte.