期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于集成学习的燃料十六烷值预测
1
作者
苗纯
高鹏
+1 位作者
唐鹏
方曙东
《池州学院学报》
2023年第6期28-30,共3页
十六烷值(cetane number,CN)是衡量柴油燃烧性能的主要指标之一,由于实验测定方法成本高且耗时长,所以人们一直在研究燃料结构与其对应的十六烷值之间关系的方法,以期替代实验测定方法。文中提出一种基于定量结构-性质关系(quantitative...
十六烷值(cetane number,CN)是衡量柴油燃烧性能的主要指标之一,由于实验测定方法成本高且耗时长,所以人们一直在研究燃料结构与其对应的十六烷值之间关系的方法,以期替代实验测定方法。文中提出一种基于定量结构-性质关系(quantitative structure-property relationship,QSPR)研究燃料结构与十六烷值之间关系的方法。该方法应用多种特征选择算法结合投票机制构成集成特征选择方法——从大量的结构参数中筛选出与燃料十六烷值最相关的15个分子描述符作为特征。然后对比人工神经网络算法和极端随机树算法建立的分子结构预测燃料十六烷值的模型。结果显示:(1)集成特征选择方法比单一特征选择方法更优;(2)极端随机树模型比人工神经网络模型对燃料的十六烷值预测精度更高。
展开更多
关键词
十六烷值预测
集成学习
集成特征选择
定量结构-性质关系
下载PDF
职称材料
题名
基于集成学习的燃料十六烷值预测
1
作者
苗纯
高鹏
唐鹏
方曙东
机构
池州学院机电工程学院
池州学院大数据与人工智能学院
出处
《池州学院学报》
2023年第6期28-30,共3页
基金
安徽高校自然科学研究重点项目(KJ2020A0760)
池州学院自然科学研究重点项目(CZ2019ZRZ09)
安徽省高校优秀青年骨干人才国内访学研修项目(gxgnfx2021156)。
文摘
十六烷值(cetane number,CN)是衡量柴油燃烧性能的主要指标之一,由于实验测定方法成本高且耗时长,所以人们一直在研究燃料结构与其对应的十六烷值之间关系的方法,以期替代实验测定方法。文中提出一种基于定量结构-性质关系(quantitative structure-property relationship,QSPR)研究燃料结构与十六烷值之间关系的方法。该方法应用多种特征选择算法结合投票机制构成集成特征选择方法——从大量的结构参数中筛选出与燃料十六烷值最相关的15个分子描述符作为特征。然后对比人工神经网络算法和极端随机树算法建立的分子结构预测燃料十六烷值的模型。结果显示:(1)集成特征选择方法比单一特征选择方法更优;(2)极端随机树模型比人工神经网络模型对燃料的十六烷值预测精度更高。
关键词
十六烷值预测
集成学习
集成特征选择
定量结构-性质关系
分类号
TQ028 [化学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于集成学习的燃料十六烷值预测
苗纯
高鹏
唐鹏
方曙东
《池州学院学报》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部