The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical m...The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical modeling of the electrohydraulic lifting system and the rubber hose was accomplished according to an electrohydraulic lifting test rig built in the laboratory.Then,valve compensation strategy,including spool opening compensation (SOC) and dead zone compensation (DZC),was designed based on the flow-pressure characteristic of a closed-centered proportional valve.Comparative experiments on point-to-point trajectory tracking between a proportional controller with the proposed compensations and a traditional PI controller were conducted.Experiment results show that the maximal absolute values of the tracking error are reduced from 0.039 m to 0.019 m for the slow point-to-point motion trajectory and from 0.085 m to 0.054 m for the fast point-to-point motion trajectory with the proposed compensations.Moreover,tracking error of the proposed controller was analyzed and corresponding suggestions to reduce the tracking error were put forward.展开更多
duniperus sabina Linnaeus, an evergreen shrub with prostrate life form, can effectively prevent sand moving and is an important tree species for reforestation in semiarid areas of China. It has laterally distributed a...duniperus sabina Linnaeus, an evergreen shrub with prostrate life form, can effectively prevent sand moving and is an important tree species for reforestation in semiarid areas of China. It has laterally distributed adventitious roots and a deeply distributed main root system. To detect water movement between the main root system and adventitious roots, we adopted heat pulse sensors using the Heat Ratio Method, a high precision method for measuring low sap flow rates. Two sensors were implanted in each individual in the stem between the main root system and adventitious roots, and another two in lateral stems distal to all the roots. Positive sap flows during nighttime, even under saturated air moisture conditions, were detected only between the main root system and adventitious roots under drought conditions, and the rate of flow increased as drought progressed and decreased or disappeared after rain events. The results demonstrated the existence of water movement from the main root system to adventitious roots, and combined with the high contribution of nighttime sap flow to transpiration (11%-16%) the results indicate that it also involves the process of hydraulic lift, a water movement from moist subsoil to dry surface soils. Integrated water use strategy between the main root system and adventitious roots via the process of hydraulic lift of soil water maximizes water acquisition efficiency from both subsoil water and water from rain pulses on the soil surface; this increases survivability in the water-limited environment of semiarid areas.展开更多
基金Project(2006CB705400)supported by the National Basic Research Program of China
文摘The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical modeling of the electrohydraulic lifting system and the rubber hose was accomplished according to an electrohydraulic lifting test rig built in the laboratory.Then,valve compensation strategy,including spool opening compensation (SOC) and dead zone compensation (DZC),was designed based on the flow-pressure characteristic of a closed-centered proportional valve.Comparative experiments on point-to-point trajectory tracking between a proportional controller with the proposed compensations and a traditional PI controller were conducted.Experiment results show that the maximal absolute values of the tracking error are reduced from 0.039 m to 0.019 m for the slow point-to-point motion trajectory and from 0.085 m to 0.054 m for the fast point-to-point motion trajectory with the proposed compensations.Moreover,tracking error of the proposed controller was analyzed and corresponding suggestions to reduce the tracking error were put forward.
文摘duniperus sabina Linnaeus, an evergreen shrub with prostrate life form, can effectively prevent sand moving and is an important tree species for reforestation in semiarid areas of China. It has laterally distributed adventitious roots and a deeply distributed main root system. To detect water movement between the main root system and adventitious roots, we adopted heat pulse sensors using the Heat Ratio Method, a high precision method for measuring low sap flow rates. Two sensors were implanted in each individual in the stem between the main root system and adventitious roots, and another two in lateral stems distal to all the roots. Positive sap flows during nighttime, even under saturated air moisture conditions, were detected only between the main root system and adventitious roots under drought conditions, and the rate of flow increased as drought progressed and decreased or disappeared after rain events. The results demonstrated the existence of water movement from the main root system to adventitious roots, and combined with the high contribution of nighttime sap flow to transpiration (11%-16%) the results indicate that it also involves the process of hydraulic lift, a water movement from moist subsoil to dry surface soils. Integrated water use strategy between the main root system and adventitious roots via the process of hydraulic lift of soil water maximizes water acquisition efficiency from both subsoil water and water from rain pulses on the soil surface; this increases survivability in the water-limited environment of semiarid areas.