期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
半转翼悬停和前进飞行升力估算方法 被引量:3
1
作者 王孝义 张玉华 +3 位作者 董银萍 邱晗 陈富强 邱支振 《中国机械工程》 EI CAS CSCD 北大核心 2017年第15期1789-1795,共7页
在分析半转翼运动模型和翼面气流特点的基础上,建立了悬停和前进两种飞行状态下的半转翼升力计算模型。根据半转翼的运动特性,推导出适合半转翼运动的升力计算解析表达式。结合半转翼样机参数,应用导出的理论公式和基于CFD软件的数值仿... 在分析半转翼运动模型和翼面气流特点的基础上,建立了悬停和前进两种飞行状态下的半转翼升力计算模型。根据半转翼的运动特性,推导出适合半转翼运动的升力计算解析表达式。结合半转翼样机参数,应用导出的理论公式和基于CFD软件的数值仿真模型,分别计算不同飞行条件下半转翼的升力,获得半转翼悬停和前进两种飞行状态下升力变化规律。理论计算与数值仿真所得升力曲线的对比验证了升力估算解析法的有效性和可行性。研究结果可为半转翼飞行器的参数设计与升力预估提供理论指导。 展开更多
关键词 半转翼 悬停飞行 前进飞行 升力计算
下载PDF
Numerical investigation of cavitating flow behind the cone of a poppet valve in water hydraulic system 被引量:24
2
作者 高红 傅新 +1 位作者 杨华勇 TSUKIJITetsuhiro 《Journal of Zhejiang University Science》 CSCD 2002年第4期395-400,共6页
Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady... Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43 000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result. 展开更多
关键词 WATER Hydraulic poppet valve Cavitating flow field Numerical simulation
下载PDF
Aerodynamic/mechanism optimization of a variable camber Fowler flap for general aviation aircraft 被引量:1
3
作者 TIAN Yun WANG Tao +1 位作者 LIU PeiQing FENG PeiHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第8期1144-1159,共16页
A conventional Fowler flap is designed to improve the take-off and landing performances of an aircraft. Because the flight states of general aviation aircraft vary significantly. A Fowler flap with a double-sliding tr... A conventional Fowler flap is designed to improve the take-off and landing performances of an aircraft. Because the flight states of general aviation aircraft vary significantly. A Fowler flap with a double-sliding track has been designed, which is ca- pable of changing airfoil camber while cruising and climbing as well as meeting low-speed performance requirements. The aerodynamic characteristics of the variable camber Fowler flap were studied by computational simulation, and cambering was found to be beneficial for improving the lift-to-drag ratio when the lift coefficient was larger than the critical value, below which decambering was more effective; this critical value differed somewhat under different conditions. Taking the mecha- nism into account, the take-off and landing configurations were optimized on the basis of the GA (W)-1 airfoil with a 30% chord Fowler flap. Compared with reference configuration, the maximum lift coefficient of optimized take-off configuration was increased by 6.6% as well as the stalling angle and the lift-to-drag ratio were increased by 1.3° and 7.58%, respectively. Moreover, the maximum lift coefficient of the optimized landing configuration was increased by 6.3%, and the stalling angle was increased by 1.1°; however, the nose-down pitching moment of both configurations increased. Similar results were at- rained on a general aviation aircraft wing/body combination nism was established in a computer-aided design system, achieved by the double-sliding track. A 3D model of the variable-camber Fowler flap driving mecha- and the results showed that all design configurations could be 展开更多
关键词 Fowler flap general aviation aircraft variable camber OPTIMIZATION
原文传递
Numerical simulation of ice accretion prediction on multiple element airfoil 被引量:4
4
作者 CAO YiHua ZHONG Guo MA Chao 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第9期2296-2304,共9页
For studying ice accretion on aircraft and helicopter airfoils,a modified model of the mass and heat transfer on icing surface was first proposed based on the classical Messinger model.Then an approach for predicting ... For studying ice accretion on aircraft and helicopter airfoils,a modified model of the mass and heat transfer on icing surface was first proposed based on the classical Messinger model.Then an approach for predicting ice accretion on multi-element airfoils was set up through introducing the interpolation calculation of airflow field around the multi-element airfoils.Consid-ering the equivalent thermal power from anti-ice system,a method of the prediction of ice accretion under anti-ice situation was proposed.In order to study the prediction of ice accretion on helicopter rotor,a numerical simulation method combining the computational fluid dynamics (CFD) technique with helicopter aerodynamics theory was set up.The agreement between the results of numerical simulation and the experimental data indicates that the model and methods proposed in this paper are feasible and effective,and that they can lay the foundation of the research on the dynamics in icing condition and design of anti/de-ice system. 展开更多
关键词 multi-element airfoils prediction of ice accretion numerical simulation hot air anti-ice system rotor icing
原文传递
A hypersonic lift mechanism with decoupled lift and drag surfaces 被引量:7
5
作者 XU YiZhe XU ZhiQi +3 位作者 LI ShaoGuang LI Juan BAI ChenYuan WU ZiNiu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第5期981-988,共8页
In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The... In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator. 展开更多
关键词 lift mechanism shock-shock interaction lift-to-drag ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部