A stratum grouting-soil-structure interaction model which simplified the grouted zone into a series of spherical grout bulbs was established using FLAC3D program. The hypothetical non-uniform expansion process to reac...A stratum grouting-soil-structure interaction model which simplified the grouted zone into a series of spherical grout bulbs was established using FLAC3D program. The hypothetical non-uniform expansion process to reach an assigned volume strain due to soil compression by grouting was achieved by imposing radial velocity on outer mesh nodes of these spheres. This new method avoids the repeated trial calculation needed in the traditional method which applied a fictitious expanding pressure in the grouting element. The deformation and additional internal forces of structure were investigated during each grouting strategy and the influences of various stiffness of grouting proof curtain and bearing capacity of pile tip were discussed simultaneously. The numerical model is proved to be effective to replicate general behavior expected in the field and is capable of modeling the uplifting effect for the surface structure by grouting.展开更多
The study of peristaltic flow of a Carreau fluid in a non-uniform tube under the con- sideration of long wavelength is presented. The flow is investigated in a wave frame of reference moving with velocity of the wave ...The study of peristaltic flow of a Carreau fluid in a non-uniform tube under the con- sideration of long wavelength is presented. The flow is investigated in a wave frame of reference moving with velocity of the wave e. Numerical integration has been used to obtain the graphical results for pressure rise and frictional forces. The effects of various emerging parameters are investigated through graphs.展开更多
Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equ...Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.展开更多
This paper describes the shape optimization of an impeller used for two-stage high pressure ring blower.Two shape variables,which are used to define an impeller shape,are introduced to increase the blower performance....This paper describes the shape optimization of an impeller used for two-stage high pressure ring blower.Two shape variables,which are used to define an impeller shape,are introduced to increase the blower performance.The pressure of a blower is selected as an object function,and the blade optimization is performed by a response surface method.Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data.Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study.Throughout the shape optimization,it is found that a hub height is effective to increase pressure in the ring blower.The pressure rise for the optimal two-stage ring blower is successfully increased up to 1.86% compared with that of reference at the design flow rate.Local recirculation flow having low velocity is formed in both sides of the impeller outlet by different flow direction of the inlet and outlet of the impeller.Detailed flow field inside the ring blower is also analyzed and discussed.展开更多
基金Project(2007AA11Z134)supported by the National High Technology Research and Development Program of ChinaProject(10JJ4035)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2010ybfz046)supported by the Fund of Excellent Doctoral Dissertation of Central South University,China
文摘A stratum grouting-soil-structure interaction model which simplified the grouted zone into a series of spherical grout bulbs was established using FLAC3D program. The hypothetical non-uniform expansion process to reach an assigned volume strain due to soil compression by grouting was achieved by imposing radial velocity on outer mesh nodes of these spheres. This new method avoids the repeated trial calculation needed in the traditional method which applied a fictitious expanding pressure in the grouting element. The deformation and additional internal forces of structure were investigated during each grouting strategy and the influences of various stiffness of grouting proof curtain and bearing capacity of pile tip were discussed simultaneously. The numerical model is proved to be effective to replicate general behavior expected in the field and is capable of modeling the uplifting effect for the surface structure by grouting.
文摘The study of peristaltic flow of a Carreau fluid in a non-uniform tube under the con- sideration of long wavelength is presented. The flow is investigated in a wave frame of reference moving with velocity of the wave e. Numerical integration has been used to obtain the graphical results for pressure rise and frictional forces. The effects of various emerging parameters are investigated through graphs.
文摘Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.
文摘This paper describes the shape optimization of an impeller used for two-stage high pressure ring blower.Two shape variables,which are used to define an impeller shape,are introduced to increase the blower performance.The pressure of a blower is selected as an object function,and the blade optimization is performed by a response surface method.Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data.Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study.Throughout the shape optimization,it is found that a hub height is effective to increase pressure in the ring blower.The pressure rise for the optimal two-stage ring blower is successfully increased up to 1.86% compared with that of reference at the design flow rate.Local recirculation flow having low velocity is formed in both sides of the impeller outlet by different flow direction of the inlet and outlet of the impeller.Detailed flow field inside the ring blower is also analyzed and discussed.