Revetments of concrete frame tetrahedrons are being used more and more in river engineering in China. Due to their complex geometry, it is difficult to measure the velocity fields inside them using traditional measure...Revetments of concrete frame tetrahedrons are being used more and more in river engineering in China. Due to their complex geometry, it is difficult to measure the velocity fields inside them using traditional measurement methods. This limits understanding of their mechanics, potentially leading to suboptimal solutions. A 3-D hydrodynamic model based on the commercial computational fluid dynamics (CFD) code, Fluent, was developed to predict velocity fields and drags. The realizable k-e model was adopted for turbulent closure of the Reynolds averaged Navier Stokes (RANS) equations. The study demonstrates that the numerical model can effectively supplement experimental studies in understanding the complex flow fields and mechanics of concrete frame tetrahedron revetments. Graphs showing the drag coefficient CD versus Reynolds number Re and lift coefficient CL versus Reynolds number Re were produced.展开更多
This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high...This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.展开更多
Large-module rack of the Three Gorges shiplift is manufactured by casting and machining, which is unable to avoid slag inclusions and surface cracks. To ensure its safety in the future service, studying on crack propa...Large-module rack of the Three Gorges shiplift is manufactured by casting and machining, which is unable to avoid slag inclusions and surface cracks. To ensure its safety in the future service, studying on crack propagation rule and the residual life estimation method of large-module rack is of great significance. The possible crack distribution forms of the rack in the Three Gorges shiplift were studied. By applying moving load on the model in FRANC3 D and ANSYS, quantitative analyses of interference effects on double cracks in both collinear and offset conditions were conducted. The variation rule of the stress intensity factor(SIF) influence factor, RK, of double collinear cracks changing with crack spacing ratio, RS, was researched. The horizontal and vertical crack spacing threshold of double cracks within the design life of the shiplift were obtained, which are 24 and 4 times as large as half of initial crack length, c0, respectively. The crack growth rates along the length and depth directions in the process of coalescence on double collinear cracks were also studied.展开更多
The hoist bracket links the rescue hoist with the helicopter cabin, and its structure design greatly affects the operation convenience and safety of the hoistman and lifeguard in the rescue process with a helicopter.T...The hoist bracket links the rescue hoist with the helicopter cabin, and its structure design greatly affects the operation convenience and safety of the hoistman and lifeguard in the rescue process with a helicopter.This paper firstly builds the force model of the hoist and bracket, and gives five kinds of typical working conditions as the design ones of the bracket. Then this paper puts forward a design process of the hoist bracket based on the topology optimization and strength analysis with the 3D modeling and finite element analysis. This design process can make the bracket's structure lightweight by achieving the optimal material layout under the conditions of maximizing the static stiffness or minimizing the compliance of the bracket. And this improves the dynamic performance of the helicopter, and reduces the fuel consumption and cost under the strength constraints. Finally,taking the design of the hoist bracket used in a rescue helicopter as an example, this paper illustrates the proposed model and method. The analysis results show that the mass of the hoist bracket decreases by 12.5% while the static stiffness of the hoist bracket is achieved. The optimization design results meet the strength requirements of the hoist.展开更多
Four intensive uplift periods, i.e., 60–35, 25–17 and 12–8 Ma (but 18–13 Ma in the Himalayas of the southern Tibet), and since about 5 Ma, can be determined on the Tibetan Plateau by synthetical analysis of low-te...Four intensive uplift periods, i.e., 60–35, 25–17 and 12–8 Ma (but 18–13 Ma in the Himalayas of the southern Tibet), and since about 5 Ma, can be determined on the Tibetan Plateau by synthetical analysis of low-temperature thermo-chronology data, sedimentary deposit records, and structural deformation records of different areas. The strong tectonic uplift periods in different areas on the Tibetan Plateau are penecontemporaneous, except for the Himalayan area of the southern Tibet, where a rapid uplift and exhumation period, controlled by the activity of the South Tibetan Detachment System faults, occurred during 18–13 Ma. These strong uplift and exhumation periods correspond well to intensive deformation activity periods, suggesting tectonically-controlled uplift and exhumation. The deposit records, such as the distribution of coarse clastic sediments, the distribution of tectonically-controlled basins, stratigraphic discontinuousness or unconformity, and fault-controlled geomorphologic evolution, also match well with the strong uplift and exhumation periods. Expanding processes of the plateau are also discussed.展开更多
Here we use a two-layer model to study the dynamics of the intrusion of the Kuroshio onto the continental shelf. Results show that the interaction of the Kuroshio water and shelf water produces a stable upwelling zone...Here we use a two-layer model to study the dynamics of the intrusion of the Kuroshio onto the continental shelf. Results show that the interaction of the Kuroshio water and shelf water produces a stable upwelling zone above 100 m depth northeast of Talwan, which provides a dynamical explanation to the presence of the cold core previously observed by satellite. The affected shelf water from the interaction has an onshore portion, which turns right and becomes a northward alongshore flow when it moves closer to shore. This implies that the Kuroshio water cannot penetrate deep onto the inner part of the continental shelf, but it generates a strong northward jet that is formed mainly by the shelf water.展开更多
基金Supported by the Science Foundation of China Three Gorges University (No.0620070016)Opening Foundation of the Environmental Engineering Key Discipline from Zhejiang University of Technology (No.20080218)+4 种基金NSFC (No.50779014,No.50879019)Ph.D. Discipline Foundation of the Ministry of Education of China (No.200802940001)Jiangsu "333" Program for High Level Talent"Six Talent Peak" Project Foundation of Jiangsu Province (No.2007006)"11th Five-year Plan" (2008BAB29B09)
文摘Revetments of concrete frame tetrahedrons are being used more and more in river engineering in China. Due to their complex geometry, it is difficult to measure the velocity fields inside them using traditional measurement methods. This limits understanding of their mechanics, potentially leading to suboptimal solutions. A 3-D hydrodynamic model based on the commercial computational fluid dynamics (CFD) code, Fluent, was developed to predict velocity fields and drags. The realizable k-e model was adopted for turbulent closure of the Reynolds averaged Navier Stokes (RANS) equations. The study demonstrates that the numerical model can effectively supplement experimental studies in understanding the complex flow fields and mechanics of concrete frame tetrahedron revetments. Graphs showing the drag coefficient CD versus Reynolds number Re and lift coefficient CL versus Reynolds number Re were produced.
文摘This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.
基金Project(0722018)supported by the China Three Gorges CorporationProject(2012KJX01)supported by the Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance,China
文摘Large-module rack of the Three Gorges shiplift is manufactured by casting and machining, which is unable to avoid slag inclusions and surface cracks. To ensure its safety in the future service, studying on crack propagation rule and the residual life estimation method of large-module rack is of great significance. The possible crack distribution forms of the rack in the Three Gorges shiplift were studied. By applying moving load on the model in FRANC3 D and ANSYS, quantitative analyses of interference effects on double cracks in both collinear and offset conditions were conducted. The variation rule of the stress intensity factor(SIF) influence factor, RK, of double collinear cracks changing with crack spacing ratio, RS, was researched. The horizontal and vertical crack spacing threshold of double cracks within the design life of the shiplift were obtained, which are 24 and 4 times as large as half of initial crack length, c0, respectively. The crack growth rates along the length and depth directions in the process of coalescence on double collinear cracks were also studied.
基金the Science and Technology Project of Ministry of Transport of China(No.2013328225080)the Natural Science Foundation of Liaoning Province of China(No.2015020121)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20122125120013)the Fundamental Research Funds for the Central Universities of China(Nos.3132016069 and 3132016354)
文摘The hoist bracket links the rescue hoist with the helicopter cabin, and its structure design greatly affects the operation convenience and safety of the hoistman and lifeguard in the rescue process with a helicopter.This paper firstly builds the force model of the hoist and bracket, and gives five kinds of typical working conditions as the design ones of the bracket. Then this paper puts forward a design process of the hoist bracket based on the topology optimization and strength analysis with the 3D modeling and finite element analysis. This design process can make the bracket's structure lightweight by achieving the optimal material layout under the conditions of maximizing the static stiffness or minimizing the compliance of the bracket. And this improves the dynamic performance of the helicopter, and reduces the fuel consumption and cost under the strength constraints. Finally,taking the design of the hoist bracket used in a rescue helicopter as an example, this paper illustrates the proposed model and method. The analysis results show that the mass of the hoist bracket decreases by 12.5% while the static stiffness of the hoist bracket is achieved. The optimization design results meet the strength requirements of the hoist.
基金supported by China Geological Survey (Grant No. 1212010610103)National Natural Science Foundation of China (Grant Nos. 40902060, 40672137)
文摘Four intensive uplift periods, i.e., 60–35, 25–17 and 12–8 Ma (but 18–13 Ma in the Himalayas of the southern Tibet), and since about 5 Ma, can be determined on the Tibetan Plateau by synthetical analysis of low-temperature thermo-chronology data, sedimentary deposit records, and structural deformation records of different areas. The strong tectonic uplift periods in different areas on the Tibetan Plateau are penecontemporaneous, except for the Himalayan area of the southern Tibet, where a rapid uplift and exhumation period, controlled by the activity of the South Tibetan Detachment System faults, occurred during 18–13 Ma. These strong uplift and exhumation periods correspond well to intensive deformation activity periods, suggesting tectonically-controlled uplift and exhumation. The deposit records, such as the distribution of coarse clastic sediments, the distribution of tectonically-controlled basins, stratigraphic discontinuousness or unconformity, and fault-controlled geomorphologic evolution, also match well with the strong uplift and exhumation periods. Expanding processes of the plateau are also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.41076013)the Major State Basic Research Development Program of China(Grant No.2007CB411800)
文摘Here we use a two-layer model to study the dynamics of the intrusion of the Kuroshio onto the continental shelf. Results show that the interaction of the Kuroshio water and shelf water produces a stable upwelling zone above 100 m depth northeast of Talwan, which provides a dynamical explanation to the presence of the cold core previously observed by satellite. The affected shelf water from the interaction has an onshore portion, which turns right and becomes a northward alongshore flow when it moves closer to shore. This implies that the Kuroshio water cannot penetrate deep onto the inner part of the continental shelf, but it generates a strong northward jet that is formed mainly by the shelf water.