期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
关于M/M/1排队系统的一个命题
1
作者 李必胜 《天津理工学院学报》 1994年第4期51-52,共2页
本文对《随机存储过程》书中涉及M/M/1排队系统的定理14提出疑义,并给出修正意见。
关键词 M/M/1排队系统 升梯时 忙期 闲期
下载PDF
Travel time prediction model of freeway based on gradient boosting decision tree 被引量:7
2
作者 Cheng Juan Chen Xianhua 《Journal of Southeast University(English Edition)》 EI CAS 2019年第3期393-398,共6页
To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in c... To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time. 展开更多
关键词 gradient boosting decision tree (GBDT) travel time prediction FREEWAY traffic state parameter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部