The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vert...The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.展开更多
Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4- head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied. The experi...Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4- head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied. The experiments were performed at P = 25- 34MPa, G = 450- 1800kg/(m^2·s) and q = 200 600kW/m^2. The results show that the pressure has only a moderate effect on the heat transfer of uhra-supercritical water when the water temperature is below the pseudocritical point. Sharp rise of the wall temperature near the pesudocritical region occurs earlier at a higher pressure. Increasing the mass velocity improves the heat transfer with a much stronger effect below the pesudocritical point than that above the pesudocritical point. For given pressure and mass velocity, the inner wall heat flux also shows a significant effect on the inner wall temperature, with a higher inner wall heat flux leading to a higher inner wall temperature. Increasing of inner wall heat flux leads to an early occurrence of sharp rise of the wall temperature. Correlations of heat transfer coefficients are also presented for vertical upward internally ribbed tubes.展开更多
文摘The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.
基金Supported by the High Technology Research and Development Programme of China (No. 2002AA526012 )and the National Natural Science Foundation of China (No. 50323001).
文摘Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4- head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied. The experiments were performed at P = 25- 34MPa, G = 450- 1800kg/(m^2·s) and q = 200 600kW/m^2. The results show that the pressure has only a moderate effect on the heat transfer of uhra-supercritical water when the water temperature is below the pseudocritical point. Sharp rise of the wall temperature near the pesudocritical region occurs earlier at a higher pressure. Increasing the mass velocity improves the heat transfer with a much stronger effect below the pesudocritical point than that above the pesudocritical point. For given pressure and mass velocity, the inner wall heat flux also shows a significant effect on the inner wall temperature, with a higher inner wall heat flux leading to a higher inner wall temperature. Increasing of inner wall heat flux leads to an early occurrence of sharp rise of the wall temperature. Correlations of heat transfer coefficients are also presented for vertical upward internally ribbed tubes.