The purpose of the vibration test of spacecrafts is to assess their adaptability to low-frequency vibration environment during lift-off.This paper gives the simulation of the satellite ground vibration test(GVT) and t...The purpose of the vibration test of spacecrafts is to assess their adaptability to low-frequency vibration environment during lift-off.This paper gives the simulation of the satellite ground vibration test(GVT) and the state of the satellite along with rocket during lift-off.The simulation results of these two states are compared on condition that the lateral vibration of satellite/launching vehicle(S/LV) interface is the same.It is shown that the dynamic responses of satellite vertex are totally different.This is because there is angular motion of S/LV interface during lift-off,but in the GVT,the angular motion is restrained.By means of numerical simulation of the lift-off state,the angular motion related to the translation motion of S/LV interface can be determined.Then,using this angular motion as supplementary condition to simulate the vibration test,the calculated dynamic responses of satellite vertex are identical with the lift-off state.It demonstrates that supplementing angular motion condition is an effective method to improve spacecraft ground vibration test more identically with the real lift-off environment.Furthermore,it is useful for the application of the multi-degree-of-freedom shaking table,and provides the basis for test condition requirement.展开更多
Numerical simulations of helicopter aerodynamic interactions among the main rotor,fuselage,engine inlets/outlets and slung loads of specific geometries have been conducted by very few researchers.In this work,the stea...Numerical simulations of helicopter aerodynamic interactions among the main rotor,fuselage,engine inlets/outlets and slung loads of specific geometries have been conducted by very few researchers.In this work,the steady-state compressible Reynolds-averaged navier-stokes equations are solved to study the aerodynamic interactions among helicopter rotor,fuselage,engine and body of revolution in three cases,namely MI-171V5,ROBIN and UH-60A.In the first case,the downwash flow provided by the rotor of the uniform actuator disc model induces a significant deflection of the airflow velocity.The vortex-shaped distribution and evolution are discussed in detail.The engine can effectively change the overall flow field.The asymmetry of the flow field is observed by using the non-uniform actuator disc model.Qualitative analysis of ROBIN and quantitative computation of UH-60A show a consistent accuracy of the rotating reference frame model for rotor.The blade tip vortex motion of UH-60A is simulated and its radial position prediction is compared to empirical formulas.While performing flow of UH-60A in hover,both the fuselage normal force and rotor lift decrease because of the impact of the body of revolution.展开更多
文摘The purpose of the vibration test of spacecrafts is to assess their adaptability to low-frequency vibration environment during lift-off.This paper gives the simulation of the satellite ground vibration test(GVT) and the state of the satellite along with rocket during lift-off.The simulation results of these two states are compared on condition that the lateral vibration of satellite/launching vehicle(S/LV) interface is the same.It is shown that the dynamic responses of satellite vertex are totally different.This is because there is angular motion of S/LV interface during lift-off,but in the GVT,the angular motion is restrained.By means of numerical simulation of the lift-off state,the angular motion related to the translation motion of S/LV interface can be determined.Then,using this angular motion as supplementary condition to simulate the vibration test,the calculated dynamic responses of satellite vertex are identical with the lift-off state.It demonstrates that supplementing angular motion condition is an effective method to improve spacecraft ground vibration test more identically with the real lift-off environment.Furthermore,it is useful for the application of the multi-degree-of-freedom shaking table,and provides the basis for test condition requirement.
文摘Numerical simulations of helicopter aerodynamic interactions among the main rotor,fuselage,engine inlets/outlets and slung loads of specific geometries have been conducted by very few researchers.In this work,the steady-state compressible Reynolds-averaged navier-stokes equations are solved to study the aerodynamic interactions among helicopter rotor,fuselage,engine and body of revolution in three cases,namely MI-171V5,ROBIN and UH-60A.In the first case,the downwash flow provided by the rotor of the uniform actuator disc model induces a significant deflection of the airflow velocity.The vortex-shaped distribution and evolution are discussed in detail.The engine can effectively change the overall flow field.The asymmetry of the flow field is observed by using the non-uniform actuator disc model.Qualitative analysis of ROBIN and quantitative computation of UH-60A show a consistent accuracy of the rotating reference frame model for rotor.The blade tip vortex motion of UH-60A is simulated and its radial position prediction is compared to empirical formulas.While performing flow of UH-60A in hover,both the fuselage normal force and rotor lift decrease because of the impact of the body of revolution.