In rapid thermal processing of a semiconductor wafer, it is important to keep a given temperature rising speed of the wafer during the temperature rising process. We made an experimental apparatus to measure the tempe...In rapid thermal processing of a semiconductor wafer, it is important to keep a given temperature rising speed of the wafer during the temperature rising process. We made an experimental apparatus to measure the temperature rising speed of a ceramic ball of 2 mm in diameter heated with four halogen lamp heaters. The heating rate of the halogen lamp heaters was controlled by computer to keep a given temperature rising speed of 50 ℃/s with a controlling time interval of 0.1 s. We examined the effect of various heating control methods on the error of the temperature rising speed of the ceramic ball. We found that a combined method of control with prepared correlation and PID (proportional integral derivative) control is a good method to decrease the error of the temperature rising speed. The average error of the temperature rising speed is 0.5 ℃/s, and the repetition error is almost zero for the temperature rising speed of 50 ℃/s from 330 ℃ to 370 ℃. We also measured the effects of artificial control delay time and measuring error of the monitoring temperature on the error of the temperature rising speed.展开更多
An effective method for delaying the dynamic stall of helicopter retreating blade by using the trailing edge flap has been established in this paper.The aerodynamic loads of blade section are calculated by using the L...An effective method for delaying the dynamic stall of helicopter retreating blade by using the trailing edge flap has been established in this paper.The aerodynamic loads of blade section are calculated by using the Leishman-Beddoes unsteady two-dimensional dynamic stall model and the aerodynamic loads of the trailing edge flap section are calculated by using the Hariharan-Leishman unsteady two-dimensional subsonic model.The analytical model for dynamic stall of elastic blade with the stiff trailing edge flap has been established.Adopting the aeroelastic analytical method and the Galerkin's method combined with numerical integration,the aeroelastic responses of rotor system in high-speed and high-load forward flight are solved.The mechanism for control of dynamic stall of retreating blade by using trailing edge flap has been presented.The numerical results indicate that the reasonably controlled swing of trailing edge flap can delay the dynamic stall of retreating blade under the same flight conditions.展开更多
文摘In rapid thermal processing of a semiconductor wafer, it is important to keep a given temperature rising speed of the wafer during the temperature rising process. We made an experimental apparatus to measure the temperature rising speed of a ceramic ball of 2 mm in diameter heated with four halogen lamp heaters. The heating rate of the halogen lamp heaters was controlled by computer to keep a given temperature rising speed of 50 ℃/s with a controlling time interval of 0.1 s. We examined the effect of various heating control methods on the error of the temperature rising speed of the ceramic ball. We found that a combined method of control with prepared correlation and PID (proportional integral derivative) control is a good method to decrease the error of the temperature rising speed. The average error of the temperature rising speed is 0.5 ℃/s, and the repetition error is almost zero for the temperature rising speed of 50 ℃/s from 330 ℃ to 370 ℃. We also measured the effects of artificial control delay time and measuring error of the monitoring temperature on the error of the temperature rising speed.
基金supported by the National Natural Science Foundation of China (Grant No. 5107520)the Fundamental Research Funds for the Central Universities (Grant No. NP2011057)
文摘An effective method for delaying the dynamic stall of helicopter retreating blade by using the trailing edge flap has been established in this paper.The aerodynamic loads of blade section are calculated by using the Leishman-Beddoes unsteady two-dimensional dynamic stall model and the aerodynamic loads of the trailing edge flap section are calculated by using the Hariharan-Leishman unsteady two-dimensional subsonic model.The analytical model for dynamic stall of elastic blade with the stiff trailing edge flap has been established.Adopting the aeroelastic analytical method and the Galerkin's method combined with numerical integration,the aeroelastic responses of rotor system in high-speed and high-load forward flight are solved.The mechanism for control of dynamic stall of retreating blade by using trailing edge flap has been presented.The numerical results indicate that the reasonably controlled swing of trailing edge flap can delay the dynamic stall of retreating blade under the same flight conditions.