The effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was c...The effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was carded out in a reaction system at a pressure of 26MPa, temperature of 380℃ or 400℃ for 30min, 70min, and 120min by Course One (the increasing course of temperature and pressure is via gaseous regions to supercritical regions), and the other group was carried out at corresponding holding conditions by Course Two (the increasing course of temperature and pressure is via liquid regions to supercritical regions). The time of the increasing courses was about 30min. Products were analyzed by Ostward-type viscometer, gaseous chromatography, and mass spectrometers (GC/MS). Characterization results suggested that different increasing courses of temperature and pressure would give rise to different results, although they were treated under the similar holding conditions. It was also found that Course Two was more effective on PP degradation in supercritical water.展开更多
Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with di...Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with different areas to provide useful information to inform data extension from a gauged-catchment to an ungauged catchment. The results showed that there are seasonal changes in the dominant driving mode of the rise of the water level. The rise of the water level in March is likely mainly driven by the mode of stored-full runoff, and in September or October, it is mainly driven by Horton-flow. The correlation coefficients of all indexes were significant among the three catchments, suggesting that these catchments have similarities and that water level data extension is likely to be completed successfully between the large catchment(III-Catchment) and the small catchment(ICatchment). It was confirmed that there is good similarity between the 0.6 km^2 and 6 km^2 catchments, and the data correlation is good between the catchments with the area differences in the Three Gorges Reservoir Area. In addition, the rise processes of the water level in the catchments were not only different under the same rain conditions, but this difference could also change with the rain condition.展开更多
基金Supported by the National Natural Science Foundation of China (No.59972022) and the 0pening Foundation of the Environmental Engineering Key Discipline, Zhejiang University of Technology (No.56310503011).
文摘The effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was carded out in a reaction system at a pressure of 26MPa, temperature of 380℃ or 400℃ for 30min, 70min, and 120min by Course One (the increasing course of temperature and pressure is via gaseous regions to supercritical regions), and the other group was carried out at corresponding holding conditions by Course Two (the increasing course of temperature and pressure is via liquid regions to supercritical regions). The time of the increasing courses was about 30min. Products were analyzed by Ostward-type viscometer, gaseous chromatography, and mass spectrometers (GC/MS). Characterization results suggested that different increasing courses of temperature and pressure would give rise to different results, although they were treated under the similar holding conditions. It was also found that Course Two was more effective on PP degradation in supercritical water.
基金funded by West Light Foundation of The Chinese Academy of Sciences,CASthe State Council Three Gorges Construction Committee Project of China
文摘Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with different areas to provide useful information to inform data extension from a gauged-catchment to an ungauged catchment. The results showed that there are seasonal changes in the dominant driving mode of the rise of the water level. The rise of the water level in March is likely mainly driven by the mode of stored-full runoff, and in September or October, it is mainly driven by Horton-flow. The correlation coefficients of all indexes were significant among the three catchments, suggesting that these catchments have similarities and that water level data extension is likely to be completed successfully between the large catchment(III-Catchment) and the small catchment(ICatchment). It was confirmed that there is good similarity between the 0.6 km^2 and 6 km^2 catchments, and the data correlation is good between the catchments with the area differences in the Three Gorges Reservoir Area. In addition, the rise processes of the water level in the catchments were not only different under the same rain conditions, but this difference could also change with the rain condition.