为开展半主动智能车辆悬架控制策略方面的验证研究,提出一种可实现减振器实时力值跟踪监测和快速控制原型(Rapid Control Prototype,RCP)的汽车悬架实验平台。基于建立的1/4悬架动力学控制方程和传递函数,分析了悬架的输出特性;为模拟...为开展半主动智能车辆悬架控制策略方面的验证研究,提出一种可实现减振器实时力值跟踪监测和快速控制原型(Rapid Control Prototype,RCP)的汽车悬架实验平台。基于建立的1/4悬架动力学控制方程和传递函数,分析了悬架的输出特性;为模拟真实车辆悬架的动态输出特性和实时监测执行器的控制力输出特性,开发了可实现实时力值跟踪监测的麦弗逊式1/4汽车悬架实验平台。该实验平台一方面可以依托快速控制原型技术开展半主动悬架最佳控制算法的研究,另一方面还可以基于平台特有的执行器输出力实时跟踪监测功能,开展执行器不确定性半主动控制策略及执行器状态观测器可靠性检验等方面的研究;通过定电流开环实验检验半主动汽车悬架系统的有效性和可控性,通过闭环控制实验分别对半主动悬架系统在半主动智能控制策略验证和悬架执行器阻尼力跟踪估计方面的有效性。展开更多
A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was establi...A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.展开更多
文摘为开展半主动智能车辆悬架控制策略方面的验证研究,提出一种可实现减振器实时力值跟踪监测和快速控制原型(Rapid Control Prototype,RCP)的汽车悬架实验平台。基于建立的1/4悬架动力学控制方程和传递函数,分析了悬架的输出特性;为模拟真实车辆悬架的动态输出特性和实时监测执行器的控制力输出特性,开发了可实现实时力值跟踪监测的麦弗逊式1/4汽车悬架实验平台。该实验平台一方面可以依托快速控制原型技术开展半主动悬架最佳控制算法的研究,另一方面还可以基于平台特有的执行器输出力实时跟踪监测功能,开展执行器不确定性半主动控制策略及执行器状态观测器可靠性检验等方面的研究;通过定电流开环实验检验半主动汽车悬架系统的有效性和可控性,通过闭环控制实验分别对半主动悬架系统在半主动智能控制策略验证和悬架执行器阻尼力跟踪估计方面的有效性。
基金Project(50775225) supported by the National Natural Science Foundation of ChinaProjects(CSTC, 2008AC6097, 2008BA6025) supported by National Natural Science Foundation of Chongqing, China
文摘A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.