In this work propagation of anti-plane (SH) waves in two piezoelectric ceramic half-spaces with a thin layer of a semiconducting material between the half-spaces is studied, and wave attenuation and dispersion caused ...In this work propagation of anti-plane (SH) waves in two piezoelectric ceramic half-spaces with a thin layer of a semiconducting material between the half-spaces is studied, and wave attenuation and dispersion caused by semiconduction as well as wave amplification by a biasing electric field are examined. Key words Piezoelectricity - Semiconductor - Wave - Attenuation - Dispersion Document code A CLC number TH11展开更多
The transmission properties of terahertz (THz) wave passing through semiconductor aperture have been investigated. The dispersion relationship for surface plasmon polariton (SPP) at different temperatures has been...The transmission properties of terahertz (THz) wave passing through semiconductor aperture have been investigated. The dispersion relationship for surface plasmon polariton (SPP) at different temperatures has been numerically calculated. The results show that the dispersion relationship increases with the increasing of frequency and the decreasing of temperature, the thickness of slab has to be taken into consideration because of the large skin depth for semiconductor slab. In addition, the propagation constant increases with the increasing of frequency and the decreasing of temperature.展开更多
The radial tidal current field accounts for the formation of the radial sand ridges in the South Yellow Sea. Understanding the formation and evolution of this radial tidal current field is vital to assessing the morph...The radial tidal current field accounts for the formation of the radial sand ridges in the South Yellow Sea. Understanding the formation and evolution of this radial tidal current field is vital to assessing the morphodynamic features in the area. A semi-enclosed rectangular basin with and without a coastal barrier was schematized from the topography of the Bohai Sea and Yellow Sea. The 2D tidal current field in this basin was simulated using the DELFT3D-FLOW model. The concept of tidal wave refraction, which highlights the effect of the sloped or stepped submarine topography on the propagation of the tidal waves, was introduced to explain the formation of the radial tidal current field. Under the effect of tidal wave refraction, co-phase lines of the counterclockwise rotating tidal wave and incident tidal wave are transformed into clockwise and counterclockwise deflections, respectively, leading to the convergence and divergence of the flow field. Regardless of whether a coastal barrier exists or not, the outer radial tidal current field might emerge over certain topography. The responses of the radial tidal current field in this basin to the environmental variations such as coastline changes and bottom erosions were discussed. Results show that local protrusion near the focal point of the radial tidal current field will have limited effects on the location of the tidal system. However, a remarkable shift of the amphidromic point toward the entrance and central axis of this basin and a movement of the focal point of the radial tidal current field toward the entrance could be caused by the significant seaward coastline advance and submarine slope erosion.展开更多
By investigating the diffraction of plane waves by a semi-infinite solution for propagating surface plasmons in graphene, which can be excited graphene edge. The theoretical results are confirmed by numerical simulati...By investigating the diffraction of plane waves by a semi-infinite solution for propagating surface plasmons in graphene, which can be excited graphene edge. The theoretical results are confirmed by numerical simulations. excite propagating surface plasmons in graphene where the graphene edge plays graphene layer, we present a rigorous by incident plane waves through the Our results reveal a convenient way to an important role.展开更多
Using 32-yr National Centers for Environment Prediction-National Center for Atmospheric Research(NCEP-NCAR) reanalysis data,we investigated zonal propagation and circulation characteristics of the low-frequency circul...Using 32-yr National Centers for Environment Prediction-National Center for Atmospheric Research(NCEP-NCAR) reanalysis data,we investigated zonal propagation and circulation characteristics of the low-frequency circulation for the prevailing period over Eurasian mid-high latitude in boreal summer(May-August) in terms of empirical orthogonal function(EOF),linear regression,and phase analysis and so on.We found that the dominant periods of the low-frequency circulation are 10-30 days and it clearly shows meridional(southward) and zonal(westward) propagation features at the middle troposphere(500 hPa).The average zonal speed of the 10-30 days low-frequency oscillation(LFO) is about 9-10 longitudes per day.Further analysis shows that the southernmost part of the polar vortex in the northern hemisphere exhibits westward clockwise rotation in the eastern hemisphere in boreal summer.Also,the southernmost tips of 5400 and 5500 gpm contours,which indicate the site of the major trough in the eastern hemisphere,obviously move westwards.The southernmost tip of 5500 gpm contour line propagates westwards at the speed of about 9-10 longitudes per day,which is consistent with the mean zonal speed of the westward propagation of the low-frequency circulation.Moreover,the 10-30-day LFO-related cold air also shows west propagation feature with respect to LFO phases.The westward propagation of the LFO is the low-frequency-scale embodiment of the clockwise rotation of polar vortex.The cold air activities closely related to polar vortex or to ridge-trough system activities is the essential circulation of 10-30 days LFO circulation over the Eurasian mid-high latitude in boreal summer.展开更多
This paper is concerned with a system of semilinear parabolic equations with two free boundaries describing the spreading fronts of the invasive species in a mutualistic eco- logical model. The local existence and uni...This paper is concerned with a system of semilinear parabolic equations with two free boundaries describing the spreading fronts of the invasive species in a mutualistic eco- logical model. The local existence and uniqueness of a classical solution are obtained and the asymptotic behavior of the free boundary problem is studied. Our results indi- cate that two free boundaries tend monotonically to finite or infinite limits at the same time, and the free boundary problem admits a global slow solution with unbounded free boundaries if the intra-specific competitions are strong, while if the intra-specific competitions are weak, there exist the blowup solution and global fast solution.展开更多
文摘In this work propagation of anti-plane (SH) waves in two piezoelectric ceramic half-spaces with a thin layer of a semiconducting material between the half-spaces is studied, and wave attenuation and dispersion caused by semiconduction as well as wave amplification by a biasing electric field are examined. Key words Piezoelectricity - Semiconductor - Wave - Attenuation - Dispersion Document code A CLC number TH11
基金the National Fund for Distinguished Young Scholars of China under Grant No.60425415the Major Project of National Natural Science Foundation of China under Grant No 10390162the Shanghai Municipal Commission of Science and Technology
文摘The transmission properties of terahertz (THz) wave passing through semiconductor aperture have been investigated. The dispersion relationship for surface plasmon polariton (SPP) at different temperatures has been numerically calculated. The results show that the dispersion relationship increases with the increasing of frequency and the decreasing of temperature, the thickness of slab has to be taken into consideration because of the large skin depth for semiconductor slab. In addition, the propagation constant increases with the increasing of frequency and the decreasing of temperature.
基金Supported by the National Natural Science Foundation of China(Nos.51179067,51379072)the Special Funds for Scientific Research on Public Welfare of Ministry of Water Resources of China(No.201201045)the College Graduate Research and Innovation Project of Jiangsu Province,China(No.CXZZ12_0254)
文摘The radial tidal current field accounts for the formation of the radial sand ridges in the South Yellow Sea. Understanding the formation and evolution of this radial tidal current field is vital to assessing the morphodynamic features in the area. A semi-enclosed rectangular basin with and without a coastal barrier was schematized from the topography of the Bohai Sea and Yellow Sea. The 2D tidal current field in this basin was simulated using the DELFT3D-FLOW model. The concept of tidal wave refraction, which highlights the effect of the sloped or stepped submarine topography on the propagation of the tidal waves, was introduced to explain the formation of the radial tidal current field. Under the effect of tidal wave refraction, co-phase lines of the counterclockwise rotating tidal wave and incident tidal wave are transformed into clockwise and counterclockwise deflections, respectively, leading to the convergence and divergence of the flow field. Regardless of whether a coastal barrier exists or not, the outer radial tidal current field might emerge over certain topography. The responses of the radial tidal current field in this basin to the environmental variations such as coastline changes and bottom erosions were discussed. Results show that local protrusion near the focal point of the radial tidal current field will have limited effects on the location of the tidal system. However, a remarkable shift of the amphidromic point toward the entrance and central axis of this basin and a movement of the focal point of the radial tidal current field toward the entrance could be caused by the significant seaward coastline advance and submarine slope erosion.
基金Supported by the National Natural Science Foundation of China under Grant Nos.51172030,11274052,90921015,and 11174040
文摘By investigating the diffraction of plane waves by a semi-infinite solution for propagating surface plasmons in graphene, which can be excited graphene edge. The theoretical results are confirmed by numerical simulations. excite propagating surface plasmons in graphene where the graphene edge plays graphene layer, we present a rigorous by incident plane waves through the Our results reveal a convenient way to an important role.
基金supported jointly by the National Natural Science Foundation of China(Grant Nos.40875052&41221064)the Calling Project of China(Grant Nos.GYHY200906017&GYHY201006020)the Basic Research Foundation of CAMS(Grant No.2010Z003)
文摘Using 32-yr National Centers for Environment Prediction-National Center for Atmospheric Research(NCEP-NCAR) reanalysis data,we investigated zonal propagation and circulation characteristics of the low-frequency circulation for the prevailing period over Eurasian mid-high latitude in boreal summer(May-August) in terms of empirical orthogonal function(EOF),linear regression,and phase analysis and so on.We found that the dominant periods of the low-frequency circulation are 10-30 days and it clearly shows meridional(southward) and zonal(westward) propagation features at the middle troposphere(500 hPa).The average zonal speed of the 10-30 days low-frequency oscillation(LFO) is about 9-10 longitudes per day.Further analysis shows that the southernmost part of the polar vortex in the northern hemisphere exhibits westward clockwise rotation in the eastern hemisphere in boreal summer.Also,the southernmost tips of 5400 and 5500 gpm contours,which indicate the site of the major trough in the eastern hemisphere,obviously move westwards.The southernmost tip of 5500 gpm contour line propagates westwards at the speed of about 9-10 longitudes per day,which is consistent with the mean zonal speed of the westward propagation of the low-frequency circulation.Moreover,the 10-30-day LFO-related cold air also shows west propagation feature with respect to LFO phases.The westward propagation of the LFO is the low-frequency-scale embodiment of the clockwise rotation of polar vortex.The cold air activities closely related to polar vortex or to ridge-trough system activities is the essential circulation of 10-30 days LFO circulation over the Eurasian mid-high latitude in boreal summer.
文摘This paper is concerned with a system of semilinear parabolic equations with two free boundaries describing the spreading fronts of the invasive species in a mutualistic eco- logical model. The local existence and uniqueness of a classical solution are obtained and the asymptotic behavior of the free boundary problem is studied. Our results indi- cate that two free boundaries tend monotonically to finite or infinite limits at the same time, and the free boundary problem admits a global slow solution with unbounded free boundaries if the intra-specific competitions are strong, while if the intra-specific competitions are weak, there exist the blowup solution and global fast solution.