It is well known that there exists the smallest inverse semigroup congruence on an orthodox semigroup. We denote by Y the smallest inverse semigroup congruence on an orthodox semigroup. Let S be a right inverse semigr...It is well known that there exists the smallest inverse semigroup congruence on an orthodox semigroup. We denote by Y the smallest inverse semigroup congruence on an orthodox semigroup. Let S be a right inverse semigroup. We construct partial orders on S by some kind of its subsemigroups and uncover that partial orders on S have close contact with partial orders on S/Y.展开更多
For a graded simple Lie algebra of Cartan type L=X(m:n) (2) X∈{W,S,H,K} , over a field F of odd characteristic p , the group generated by one-parameter subgroups of the form exp( t ad y )is descr...For a graded simple Lie algebra of Cartan type L=X(m:n) (2) X∈{W,S,H,K} , over a field F of odd characteristic p , the group generated by one-parameter subgroups of the form exp( t ad y )is described, where y∈L+F u satisfying y p=0 , t∈F and u is some fixed element of the p -envelope of L in Der u (m :n).展开更多
基金Foundation item: Supported by NSF of China(10471112) Supported by Shaanxi Provincial Natural Science Foundation(2005A15) Acknowledgement The authors express their gratitude to the referees for very helpful and detailed comments.
文摘It is well known that there exists the smallest inverse semigroup congruence on an orthodox semigroup. We denote by Y the smallest inverse semigroup congruence on an orthodox semigroup. Let S be a right inverse semigroup. We construct partial orders on S by some kind of its subsemigroups and uncover that partial orders on S have close contact with partial orders on S/Y.
文摘For a graded simple Lie algebra of Cartan type L=X(m:n) (2) X∈{W,S,H,K} , over a field F of odd characteristic p , the group generated by one-parameter subgroups of the form exp( t ad y )is described, where y∈L+F u satisfying y p=0 , t∈F and u is some fixed element of the p -envelope of L in Der u (m :n).