本文把随机效应看作缺失数据并利用P-样条拟合非参数部分,应用Monte Carlo EM 加速算法得到半变系数再生散度混合效应模型的未知参数的估计,同时利用Q函数,得到了模型的广义Cook距离。此外,本文还研究了三种不同扰动情形的局部影响分析...本文把随机效应看作缺失数据并利用P-样条拟合非参数部分,应用Monte Carlo EM 加速算法得到半变系数再生散度混合效应模型的未知参数的估计,同时利用Q函数,得到了模型的广义Cook距离。此外,本文还研究了三种不同扰动情形的局部影响分析,得到了相应的影响矩阵。最后,通过一个实际例子验证了所提出的诊断统计量的有效性。展开更多
基金supported by the Science and Technology Research Program of Chongqing Education Commission(Grant No.KJZD-M202100801)the Fifth Batch of Excellent Talent Support Program of Chongqing Colleges and University(Grant No.68021900601)+4 种基金the Natural Science Foundation of CQ CSTC(Grant No.cstc.2018jcyjA2073)the Program for the Chongqing Statistics Postgraduate Supervisor Team(Grant No.yds183002)the Chongqing Social Science Plan Project(Grant No.2019WT59)the Open Project from Chongqing Key Laboratory of Social Economy and Applied Statistics(Grant No.KFJJ2018066)the Mathematic and Statistics Team from Chongqing Technology and Business University(Grant No.ZDPTTD201906).
基金Supported by the Science and the Technology Program for Guangdong Province(2012B010100044)the Science and Technological Program for Dongguan Higher Education,and the Science and Research Institutions(2012108102031)
文摘本文把随机效应看作缺失数据并利用P-样条拟合非参数部分,应用Monte Carlo EM 加速算法得到半变系数再生散度混合效应模型的未知参数的估计,同时利用Q函数,得到了模型的广义Cook距离。此外,本文还研究了三种不同扰动情形的局部影响分析,得到了相应的影响矩阵。最后,通过一个实际例子验证了所提出的诊断统计量的有效性。