We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations...We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations methods. The other one arises from Bose-Einstein condensates(BEC), whose objective function is a summation of a probably nonconvex quadratic function and a quartic term. These two polynomial optimization problems are closely connected since the BEC problem can be viewed as a structured fourth-order best rank-1 tensor approximation. We show that the BEC problem is NP-hard and propose a semidefinite relaxation with both deterministic and randomized rounding procedures. Explicit approximation ratios for these rounding procedures are presented. The performance of these semidefinite relaxations are illustrated on a few preliminary numerical experiments.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 11401364, 11322109, 11331012, 11471325 and 11461161005)the National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA122902)+1 种基金the National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of SciencesNational Basic Research Program of China (973 Program) (Grant No. 2015CB856002)
文摘We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations methods. The other one arises from Bose-Einstein condensates(BEC), whose objective function is a summation of a probably nonconvex quadratic function and a quartic term. These two polynomial optimization problems are closely connected since the BEC problem can be viewed as a structured fourth-order best rank-1 tensor approximation. We show that the BEC problem is NP-hard and propose a semidefinite relaxation with both deterministic and randomized rounding procedures. Explicit approximation ratios for these rounding procedures are presented. The performance of these semidefinite relaxations are illustrated on a few preliminary numerical experiments.