AIM: To explore epigenetic changes in the gene encod- ing X chromosome-linked inhibitor of apoptosis-associ- ated factor 1 (XAF1) during esophageal carcinogenesis. METHODS: Methylation status of XAF1 was detected ...AIM: To explore epigenetic changes in the gene encod- ing X chromosome-linked inhibitor of apoptosis-associ- ated factor 1 (XAF1) during esophageal carcinogenesis. METHODS: Methylation status of XAF1 was detected by methylation-specific polymerase chain reaction (MSP) in four esophageal cancer cell lines (KYSE30, KYSE70, BICl and partially methylated in TE3 cell lines), nine cases of normal mucosa, 72 cases of pri- mary esophageal cancer and matched adjacent tissue. XAF1 expression was examined by semi-quantitative reverse transcriptional polymerase chain reaction and Western blotting before and after treatment with 5-aza- deoxycytidine (5-aza-dc), a demethylating agent. To investigate the correlation of XAF1 expression and methylation status in primary esophageal cancer, immu- nohistochemistry for XAF1 expression was performed in 32 cases of esophageal cancer and matched adjacent tissue. The association of methylation status and clini-copathological data was analyzed by logistic regression. RESULTS: MSP results were as follows: loss of XAF1 expression was found in three of four esophageal cell lines with promoter region hypermethylation (com- pletely methylated in KYSE30, KYSE70 and BIC1 cell lines and partially in TE3 cells); all nine cases of normal esophageal mucosa were unmethylated; and 54/72 (75.00%) samples from patients with esophageal can- cer were methylated, and 25/72 (34.70%) matched adjacent tissues were methylated (75.00% vs 34,70%, z2 = 23.5840, P = 0.000). mRNA level of XAF1 mea- sured with semi-quantitative reverse transcription poly- merase chain reaction was detectable only in TE3 cells, and no expression was detected in KYSE30, KYSE70 or BIC1 cells. Protein expression was not observed in KYSE30 cells by Western blotting before treatment with 5-aza-dc. After treatment, mRNA level of XAF1 was detectable in KYSE30, KYSE70 and BIC1 cells. Protein expression was detected in KYSE30 after treatment with 5-aza-dc. Immunohistochemistry was performed on 32 cases of esophageal cancer and adjacent tissue, and demonstrated XAF1 in the nucleus and cytoplasm. XAF1 staining was found in 20/32 samples of adjacent normal tissue but was present in only 8/32 samples of esophageal cancer tissue (Z2= 9.143, P = 0.002). XAF1 expression was decreased in cancer samples compared with adjacent tissues. In 32 cases of esophageal can- cer, 24/32 samples were methylated, and 8/32 esopha- geal cancer tissues were unmethylated. XAF1 staining was found in 6/8 samples of unmethylated esophageal cancer and 2/24 samples of methylated esophageal cancer tissue. XAF1 staining was inversely correlated with XAF1 promoter region methylation (Fisher's exact test, P = 0.004). Regarding methylation status and clinicopathological data, no significant differences were found in sex, age, tumor size, tumor stage, or metas- tasis with respect to methylation of XAF1 for the 72 tis- sue samples from patients with esophageal cancer. CONCLUSION: XAF1 is frequently methylated in eso- phageal cancer, and XAF1 expression is regulated by promoter region hypermethylation.展开更多
The aim of this study is to assess the occurrence and type of violence suffered by women with breast cancer in the High Complexity Care Unit of a municipality in the South of Minas and patients in a support group of t...The aim of this study is to assess the occurrence and type of violence suffered by women with breast cancer in the High Complexity Care Unit of a municipality in the South of Minas and patients in a support group of the University of the South of Minas Gerais. For that aim, a descriptive-exploratory methodology was applied through the quantitative method. Data were collected through a semi-structured form applied in individual interviews over a period of three months. We interviewed 57 patients and among those, 20 women (35.08%) reported having experienced some form of violence at some stage of their life, and the most frequently mentioned was the psychological violence followed by physical aggression. Although it was possible to identify that violence against affected these women, complaints against the aggressor were not affected.展开更多
AIM:To investigate the expression of chondroitin sulphate proteoglycans(CSPGs)in rat liver tissues of hepatocellular carcinoma(HCC).METHODS:Thirty male Sprague Dawley rats were randomly divided into two groups:control...AIM:To investigate the expression of chondroitin sulphate proteoglycans(CSPGs)in rat liver tissues of hepatocellular carcinoma(HCC).METHODS:Thirty male Sprague Dawley rats were randomly divided into two groups:control group(n=10) and HCC model group(n=20).Rats in the HCC model groups were intragastrically administrated with 0.2%(w/v)N-diethylnitrosamine(DEN)every 5 d for 16 wk,whereas 0.9%(w/v)normal saline was administered to rats in the control group.After 16 wk from the initiation of experiment,all rats were killed and livers were collected and fixed in 4%(w/v)paraformaldehyde.All tissues were embedded in paraffin and sectioned.Histological staining(hematoxylin and eosin and Toluidine blue)was performed to demonstrate the onset of HCC and the content of sulphated glycosaminoglycan(sGAG).Immunohistochemical staining was performed to investigate the expression of chondroitin sulphate(CS)/dermatan sulphate(DS)-GAG,heparan sulphate(HS)-GAG,keratan sulphate(KS)-GAG in liver tissues.Furthermore,expression and distribution of CSPG family members,including aggrecan,versican,biglycan and decorin in liver tissues,were also immunohistochemically determined.RESULTS:After 16 wk administration of DEN,malignant nodules were observed on the surface of livers from the HCC model group,and their hepatic lobule structures appeared largely disrupted under microscope.Toluidine blue staining demonstrated that there was an significant increase in sGAG content in HCC tissues when compared with that in the normal liver tissues from the control group[0.37±0.05 integrated optical density per stained area(IOD/area)and 0.21± 0.01 IOD/area,P<0.05].Immunohistochemical studies demonstrated that this increased sGAG in HCC tissues was induced by an elevated expression of CS/DS(0.28±0.02 IOD/area and 0.18±0.02 IOD/area,P< 0.05)and HS(0.30±0.03 IOD/area and 0.17±0.02 IOD/area,P<0.01)but not KS GAGs in HCC tissues.Further studies thereby were performed to investigate the expression and distribution of several CSPG components in HCC tissues,including aggrecan,versican,biglycan and decorin.Interestingly,there was a distinct distribution pattern for these CSPG components between HCC tissues and the normal tissues.Positive staining of aggrecan,biglycan and decorin was localized in hepatic membrane and/or pericellular matrix in normal liver tissues;however,their expression was mainly observed in the cytoplasm,cell membranes in hepatoma cells and/or pericellular matrix within HCC tissues.Semi-quantitative analysis indicated that there was a higher level of expression of aggrecan(0.43± 0.01 and 0.35±0.03,P<0.05),biglycan(0.32±0.01 and 0.25±0.01,P<0.001)and decorin(0.29±0.01 and 0.26±0.01,P<0.05)in HCC tissues compared with that in the normal liver tissues.Very weak versican positive staining was observed in hepatocytes near central vein in normal liver tissues;however there was an intensive versican distribution in fibrosis septa between the hepatoma nodules.Semi-quantitative analysis indicated that the positive rate of versican in hepatoma tissues from the HCC model group was much higher than that in the control group(33.61%and 21.28%,P <0.05).There was no positive staining in lumican and keratocan,two major KSPGs,in either normal or HCC liver tissues.CONCLUSION:CSPGs play important roles in the onset and progression of HCC,and may provide potential therapeutic targets and clinical biomarkers for this prevalent tumor in humans.展开更多
Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro, so as to lay a foundation for the cell-based transplantation therapy...Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro, so as to lay a foundation for the cell-based transplantation therapy of degenerated intervertebral discs. Methods: Rat ADSCs were isolated only from the subcutaneous inguinal region and purified by limited dilution. ADSCs of the third passages were analyzed by fluorescence activated cell sorter (FACS) to detect the cell surface markers (Sca-1, CD44, CD45, CDI lb). To induce ADSCs to- wards a nucleus pulposus-like phenotype, ADSCs were immobilized in 3-dimensional alginate hydrogels and cultured in an inducing medium containing transforming growth factor-beta1 (TGF- β1) under hypoxia (2% O2), while control groups under normoxia (21% O2) in alginate beads in medium with or without the presence of TGF-β 1. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was carried out to evaluate phenotypic and biosynthetic activities in the process of differentiation. Meanwhile, Alcian blue staining were used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells. Results: The purified ADSCs were fibroblast-like and proliferated rapidly in vitro. The flow cytometry showed that ADSCs were positive for Sca-1 and CD44, negative for CD45 and CD11b. The results of RT-PCR manifested that the gene expressions of Sox-9, aggrecan and collagen Ⅱ, which were chondrocyte specific, were upregulated in medium containing TGF-β1 under hypoxia (2% O2). Likewise, gene expression of HIF-1 a, which was characteristics of in- tervertebral discs, was also upregulated. Simultaneously, Alcian blue staining exhibited the formation of many GAGs. Conclusions: The approach in our experiment is a simple and effective way to acquire a large quantity of homogenous ADSCs. Rat ADSCs can be differentiated into nucleus pulposus-like cells. ADSCs may replace bone marrow mesenchymal stem cells as a new kind of seed cells in regeneration of degenerated intervertebral discs using cell transolantation therarw.展开更多
基金Supported by Grants from the National Basic Research Program(973 Program), No. 2012CB934002, 2010CB912802National Key Scientific Instrument Special Programme of China, No.2011YQ03013405National Science Foundation of China,No. 81121004, 81071953 and 81161120432
文摘AIM: To explore epigenetic changes in the gene encod- ing X chromosome-linked inhibitor of apoptosis-associ- ated factor 1 (XAF1) during esophageal carcinogenesis. METHODS: Methylation status of XAF1 was detected by methylation-specific polymerase chain reaction (MSP) in four esophageal cancer cell lines (KYSE30, KYSE70, BICl and partially methylated in TE3 cell lines), nine cases of normal mucosa, 72 cases of pri- mary esophageal cancer and matched adjacent tissue. XAF1 expression was examined by semi-quantitative reverse transcriptional polymerase chain reaction and Western blotting before and after treatment with 5-aza- deoxycytidine (5-aza-dc), a demethylating agent. To investigate the correlation of XAF1 expression and methylation status in primary esophageal cancer, immu- nohistochemistry for XAF1 expression was performed in 32 cases of esophageal cancer and matched adjacent tissue. The association of methylation status and clini-copathological data was analyzed by logistic regression. RESULTS: MSP results were as follows: loss of XAF1 expression was found in three of four esophageal cell lines with promoter region hypermethylation (com- pletely methylated in KYSE30, KYSE70 and BIC1 cell lines and partially in TE3 cells); all nine cases of normal esophageal mucosa were unmethylated; and 54/72 (75.00%) samples from patients with esophageal can- cer were methylated, and 25/72 (34.70%) matched adjacent tissues were methylated (75.00% vs 34,70%, z2 = 23.5840, P = 0.000). mRNA level of XAF1 mea- sured with semi-quantitative reverse transcription poly- merase chain reaction was detectable only in TE3 cells, and no expression was detected in KYSE30, KYSE70 or BIC1 cells. Protein expression was not observed in KYSE30 cells by Western blotting before treatment with 5-aza-dc. After treatment, mRNA level of XAF1 was detectable in KYSE30, KYSE70 and BIC1 cells. Protein expression was detected in KYSE30 after treatment with 5-aza-dc. Immunohistochemistry was performed on 32 cases of esophageal cancer and adjacent tissue, and demonstrated XAF1 in the nucleus and cytoplasm. XAF1 staining was found in 20/32 samples of adjacent normal tissue but was present in only 8/32 samples of esophageal cancer tissue (Z2= 9.143, P = 0.002). XAF1 expression was decreased in cancer samples compared with adjacent tissues. In 32 cases of esophageal can- cer, 24/32 samples were methylated, and 8/32 esopha- geal cancer tissues were unmethylated. XAF1 staining was found in 6/8 samples of unmethylated esophageal cancer and 2/24 samples of methylated esophageal cancer tissue. XAF1 staining was inversely correlated with XAF1 promoter region methylation (Fisher's exact test, P = 0.004). Regarding methylation status and clinicopathological data, no significant differences were found in sex, age, tumor size, tumor stage, or metas- tasis with respect to methylation of XAF1 for the 72 tis- sue samples from patients with esophageal cancer. CONCLUSION: XAF1 is frequently methylated in eso- phageal cancer, and XAF1 expression is regulated by promoter region hypermethylation.
文摘The aim of this study is to assess the occurrence and type of violence suffered by women with breast cancer in the High Complexity Care Unit of a municipality in the South of Minas and patients in a support group of the University of the South of Minas Gerais. For that aim, a descriptive-exploratory methodology was applied through the quantitative method. Data were collected through a semi-structured form applied in individual interviews over a period of three months. We interviewed 57 patients and among those, 20 women (35.08%) reported having experienced some form of violence at some stage of their life, and the most frequently mentioned was the psychological violence followed by physical aggression. Although it was possible to identify that violence against affected these women, complaints against the aggressor were not affected.
基金Supported by The National Natural Science Foundation of China,No.30471982(to Dang SS and Cheng YA)Arthritis Research UK,No.18331(to Hughes CE and Caterson B)
文摘AIM:To investigate the expression of chondroitin sulphate proteoglycans(CSPGs)in rat liver tissues of hepatocellular carcinoma(HCC).METHODS:Thirty male Sprague Dawley rats were randomly divided into two groups:control group(n=10) and HCC model group(n=20).Rats in the HCC model groups were intragastrically administrated with 0.2%(w/v)N-diethylnitrosamine(DEN)every 5 d for 16 wk,whereas 0.9%(w/v)normal saline was administered to rats in the control group.After 16 wk from the initiation of experiment,all rats were killed and livers were collected and fixed in 4%(w/v)paraformaldehyde.All tissues were embedded in paraffin and sectioned.Histological staining(hematoxylin and eosin and Toluidine blue)was performed to demonstrate the onset of HCC and the content of sulphated glycosaminoglycan(sGAG).Immunohistochemical staining was performed to investigate the expression of chondroitin sulphate(CS)/dermatan sulphate(DS)-GAG,heparan sulphate(HS)-GAG,keratan sulphate(KS)-GAG in liver tissues.Furthermore,expression and distribution of CSPG family members,including aggrecan,versican,biglycan and decorin in liver tissues,were also immunohistochemically determined.RESULTS:After 16 wk administration of DEN,malignant nodules were observed on the surface of livers from the HCC model group,and their hepatic lobule structures appeared largely disrupted under microscope.Toluidine blue staining demonstrated that there was an significant increase in sGAG content in HCC tissues when compared with that in the normal liver tissues from the control group[0.37±0.05 integrated optical density per stained area(IOD/area)and 0.21± 0.01 IOD/area,P<0.05].Immunohistochemical studies demonstrated that this increased sGAG in HCC tissues was induced by an elevated expression of CS/DS(0.28±0.02 IOD/area and 0.18±0.02 IOD/area,P< 0.05)and HS(0.30±0.03 IOD/area and 0.17±0.02 IOD/area,P<0.01)but not KS GAGs in HCC tissues.Further studies thereby were performed to investigate the expression and distribution of several CSPG components in HCC tissues,including aggrecan,versican,biglycan and decorin.Interestingly,there was a distinct distribution pattern for these CSPG components between HCC tissues and the normal tissues.Positive staining of aggrecan,biglycan and decorin was localized in hepatic membrane and/or pericellular matrix in normal liver tissues;however,their expression was mainly observed in the cytoplasm,cell membranes in hepatoma cells and/or pericellular matrix within HCC tissues.Semi-quantitative analysis indicated that there was a higher level of expression of aggrecan(0.43± 0.01 and 0.35±0.03,P<0.05),biglycan(0.32±0.01 and 0.25±0.01,P<0.001)and decorin(0.29±0.01 and 0.26±0.01,P<0.05)in HCC tissues compared with that in the normal liver tissues.Very weak versican positive staining was observed in hepatocytes near central vein in normal liver tissues;however there was an intensive versican distribution in fibrosis septa between the hepatoma nodules.Semi-quantitative analysis indicated that the positive rate of versican in hepatoma tissues from the HCC model group was much higher than that in the control group(33.61%and 21.28%,P <0.05).There was no positive staining in lumican and keratocan,two major KSPGs,in either normal or HCC liver tissues.CONCLUSION:CSPGs play important roles in the onset and progression of HCC,and may provide potential therapeutic targets and clinical biomarkers for this prevalent tumor in humans.
文摘Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro, so as to lay a foundation for the cell-based transplantation therapy of degenerated intervertebral discs. Methods: Rat ADSCs were isolated only from the subcutaneous inguinal region and purified by limited dilution. ADSCs of the third passages were analyzed by fluorescence activated cell sorter (FACS) to detect the cell surface markers (Sca-1, CD44, CD45, CDI lb). To induce ADSCs to- wards a nucleus pulposus-like phenotype, ADSCs were immobilized in 3-dimensional alginate hydrogels and cultured in an inducing medium containing transforming growth factor-beta1 (TGF- β1) under hypoxia (2% O2), while control groups under normoxia (21% O2) in alginate beads in medium with or without the presence of TGF-β 1. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was carried out to evaluate phenotypic and biosynthetic activities in the process of differentiation. Meanwhile, Alcian blue staining were used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells. Results: The purified ADSCs were fibroblast-like and proliferated rapidly in vitro. The flow cytometry showed that ADSCs were positive for Sca-1 and CD44, negative for CD45 and CD11b. The results of RT-PCR manifested that the gene expressions of Sox-9, aggrecan and collagen Ⅱ, which were chondrocyte specific, were upregulated in medium containing TGF-β1 under hypoxia (2% O2). Likewise, gene expression of HIF-1 a, which was characteristics of in- tervertebral discs, was also upregulated. Simultaneously, Alcian blue staining exhibited the formation of many GAGs. Conclusions: The approach in our experiment is a simple and effective way to acquire a large quantity of homogenous ADSCs. Rat ADSCs can be differentiated into nucleus pulposus-like cells. ADSCs may replace bone marrow mesenchymal stem cells as a new kind of seed cells in regeneration of degenerated intervertebral discs using cell transolantation therarw.