期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
苹果的半密植栽培
1
作者 久米靖穗 王继世 《国外农学(果树)》 1989年第4期3-5,共3页
1.前言在《农业及园艺》1985年第60卷第2期中,重点介绍了幼树时期树的处理,这里简要叙述以后的情况。为使以圆叶海棠为砧木的半密植栽培得到成功,一开始就把整枝剪定做为重要的技术,注意下列各点以便维持树形。
关键词 苹果 半密植 栽培
下载PDF
渭北旱塬苹果密植栽培模式对土壤水分的影响 被引量:4
2
作者 白岗栓 邹超煜 杜社妮 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2020年第3期308-318,共11页
为了减轻渭北旱塬苹果栽培中土壤干燥化对苹果生产带来的不利影响,以盛果期乔砧密植园为对照,在萌芽前将相同树龄、相同产量的半矮化砧密植园和矮砧密植园0~300 cm土层的土壤水分调整成同一水平,定期监测不同密植栽培模式对不同土层土... 为了减轻渭北旱塬苹果栽培中土壤干燥化对苹果生产带来的不利影响,以盛果期乔砧密植园为对照,在萌芽前将相同树龄、相同产量的半矮化砧密植园和矮砧密植园0~300 cm土层的土壤水分调整成同一水平,定期监测不同密植栽培模式对不同土层土壤水分的影响,以便为该区域苹果栽培提供科学支撑。结果表明:矮砧密植园0~300 cm土层土壤水分高于半矮化砧密植园,半矮化砧密植园高于乔砧密植园,且从春季到秋季,不同果园土壤水分之间的差距逐渐增大。监测期(2016年3—11月)矮砧、半矮化砧和乔砧密植园的土壤水分蒸散量较同期降水量分别高出4.51、46.37和92.70 mm,生长期(2016年4—10月)分别高出-18.06、22.35和65.34 mm,说明乔砧密植加剧了果园土壤干燥化。矮砧、半矮化砧密植园的土壤水分利用效率较乔砧密植园分别提高了14.98%和9.58%。综上所述,矮砧密植、半矮化砧密植可减缓果园土壤干燥化,提高果园土壤水分利用效率,所以渭北旱塬应积极推广苹果矮砧、半矮化砧密植栽培。 展开更多
关键词 苹果 矮砧密植 矮化砧密植 土壤水分
下载PDF
Tomato detection method using domain adaptive learning for dense planting environments
3
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部