前言:随着国内无线、多媒体市场的广阔需求,作为连接微电子技术与现实生活的平台,半导体封装基板的制造技术的地位日益凸显。上海美维科技有限公司——半导体封装基板中心(简称SP),一直致力于封装基板的技术开发,是该领域的佼佼者。本...前言:随着国内无线、多媒体市场的广阔需求,作为连接微电子技术与现实生活的平台,半导体封装基板的制造技术的地位日益凸显。上海美维科技有限公司——半导体封装基板中心(简称SP),一直致力于封装基板的技术开发,是该领域的佼佼者。本刊通讯员近日有幸采访了MR. C. B. Katzko总监,让我们零距离贴近美维科技有限公司。展开更多
Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision...Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision transfer-printing method for vertical arrays of single crystalline semiconductor materials with widely varying aspect ratios and densities enabling the assembly of arrays on flexible substrates in a vertical fashion. Complementary fabrication processes for integrating transferred arrays into flexible devices are also presented and characterized. Robust contacts to transferred silicon wire arrays are demonstrated and shown to be stable under flexing stress down to bending radii of 20 mm. The fabricated devices exhibit a reversible tactile response enabling silicon based, nonpiezoelectric, and flexible tactile sensors. The presented system leads the way towards high-throughput, manufacturable, and scalable fabrication of flexible devices.展开更多
文摘前言:随着国内无线、多媒体市场的广阔需求,作为连接微电子技术与现实生活的平台,半导体封装基板的制造技术的地位日益凸显。上海美维科技有限公司——半导体封装基板中心(简称SP),一直致力于封装基板的技术开发,是该领域的佼佼者。本刊通讯员近日有幸采访了MR. C. B. Katzko总监,让我们零距离贴近美维科技有限公司。
文摘Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision transfer-printing method for vertical arrays of single crystalline semiconductor materials with widely varying aspect ratios and densities enabling the assembly of arrays on flexible substrates in a vertical fashion. Complementary fabrication processes for integrating transferred arrays into flexible devices are also presented and characterized. Robust contacts to transferred silicon wire arrays are demonstrated and shown to be stable under flexing stress down to bending radii of 20 mm. The fabricated devices exhibit a reversible tactile response enabling silicon based, nonpiezoelectric, and flexible tactile sensors. The presented system leads the way towards high-throughput, manufacturable, and scalable fabrication of flexible devices.