A novel horizontal push-pull multi-substrate epitaxy boat with three separate cells is introduced in this article, with which multi-substrate LPE processing is feasible in horizontal LPE furnace. The processes of LPE ...A novel horizontal push-pull multi-substrate epitaxy boat with three separate cells is introduced in this article, with which multi-substrate LPE processing is feasible in horizontal LPE furnace. The processes of LPE AlxGa1-x)As/ GaAs solar cells are studied and the efficiency of the solar cells achieved 19.8% (AMO, 25℃, 120 mW/cm2).展开更多
The progressive stacking of chalcogenide single layers gives rise to two- dimensional semiconducting materials with tunable properties that can be exploited for new field-effect transistors and photonic devices. Yet t...The progressive stacking of chalcogenide single layers gives rise to two- dimensional semiconducting materials with tunable properties that can be exploited for new field-effect transistors and photonic devices. Yet the properties of some members of the chalcogenide family remain unexplored. Indium selenide (InSe) is attractive for applications due to its direct bandgap in the near infrared, controllable p- and n-type doping and high chemical stability. Here, we reveal the lattice dynamics, optical and electronic properties of atomically thin InSe flakes prepared by micromechanical cleavage. Raman active modes stiffen or soften in the flakes depending on which electronic bonds are excited. A progressive blue-shift of the photoluminescence peaks is observed for decreasing flake thickness (as large as 0.2 eV for three single layers). First-principles calculations predict an even larger increase in the bandgap, 0.40 eV, for three single layers, and as much as 1.1 eV for a single layer. These results are promising from the point of view of the versatility of this material for optoelectronic applications at the nanometer scale and compatible with Si and III-V technologies.展开更多
Organic field-effect transistors(OFETs) offer great potential applications in chemical and biological sensing for homeland security,environmental monitoring,industry manufacturing,and medical/biological detection. M...Organic field-effect transistors(OFETs) offer great potential applications in chemical and biological sensing for homeland security,environmental monitoring,industry manufacturing,and medical/biological detection. Many studies concentrate on sensitivity and selectivity improvement of OFET-based sensors. We report four organic semiconductors with different alkyl side chain lengths but the same π-conjugated core structure for OFETs. Our work focuses on the molecular structure of organic semiconductors(OSCs). Alkyl side chains can hinder the diffusion of ammonia into the OSCs layer,which blocks the interaction between ammonia and conducting channel. The result also reveals the relationship between the alky chain and the film thickness in sensitivity control. These results are expected to be a guide to the molecular design of organic semiconductors and the choice of OSCs.展开更多
Explorations of new second harmonic generation materials in Ag^+-Hg^2+/Bi^3+-selenites systems afforded three new silver selenium oxides, namely, Ag4 Hg(SeO3)2(SeO4)(1), Ag2Bi2(SeO3)3(SeO4)(2) and Ag5 Bi(SeO3)4(3). Th...Explorations of new second harmonic generation materials in Ag^+-Hg^2+/Bi^3+-selenites systems afforded three new silver selenium oxides, namely, Ag4 Hg(SeO3)2(SeO4)(1), Ag2Bi2(SeO3)3(SeO4)(2) and Ag5 Bi(SeO3)4(3). They exhibit flexible crystal chemistry. Compounds 1 and 2 are mixed valence selenium oxides containing Se(IV) and Se(VI) cations simultaneously. Compounds 1 and 3 exhibit a 3 D open framework with 4-, 6-and 8-member polyhedral ring tunnels along a, b and c axes. Compound 1 crystallized in a polar space group and could display a subtle frequency doubling efficiency about 35% of the commercial KH2PO4(KDP). UV-vis-NIR spectra reveal that compounds 1–3 are wide-band semiconductors with the optical bandgaps of 3.11, 3.65, 3.58 e V respectively. Theoretical calculations disclose that compounds2 and 3 are indirect band gap structures and their bandgaps are determined by Ag, Bi, Se and O atoms together.展开更多
Organic semiconductors have gradually become the super stars on the stage of optoelectronic materials, due to their low cost, flexibility and solution processability. Numerous organic semiconductors, including small m...Organic semiconductors have gradually become the super stars on the stage of optoelectronic materials, due to their low cost, flexibility and solution processability. Numerous organic semiconductors, including small molecules and conjugated polymers, have been designed and synthesized to explore the potential of organic materials in optoelectronic industry. One-dimensional micro/nanostructures of organic semiconductors generally have more ordered packing structure with fewer defects compared with thin films, and are thus thought to show intrinsic carrier mobility of organic materials. Moreover, the packing structure in micro/nanostructures is clear and relatively easy to analyze, which makes these micro/nanostructures a good platform to study structure-property relationship. Therefore, design of suitable organic molecules to form micro-/nanostructures and methods to obtain ideal micro/nanostructures for functional devices will be fully discussed in this mini review. Finally, the perspective and opportunity of 1D micro/nanostructured organic materials based OFETs in the near future are also addressed.展开更多
文摘A novel horizontal push-pull multi-substrate epitaxy boat with three separate cells is introduced in this article, with which multi-substrate LPE processing is feasible in horizontal LPE furnace. The processes of LPE AlxGa1-x)As/ GaAs solar cells are studied and the efficiency of the solar cells achieved 19.8% (AMO, 25℃, 120 mW/cm2).
文摘The progressive stacking of chalcogenide single layers gives rise to two- dimensional semiconducting materials with tunable properties that can be exploited for new field-effect transistors and photonic devices. Yet the properties of some members of the chalcogenide family remain unexplored. Indium selenide (InSe) is attractive for applications due to its direct bandgap in the near infrared, controllable p- and n-type doping and high chemical stability. Here, we reveal the lattice dynamics, optical and electronic properties of atomically thin InSe flakes prepared by micromechanical cleavage. Raman active modes stiffen or soften in the flakes depending on which electronic bonds are excited. A progressive blue-shift of the photoluminescence peaks is observed for decreasing flake thickness (as large as 0.2 eV for three single layers). First-principles calculations predict an even larger increase in the bandgap, 0.40 eV, for three single layers, and as much as 1.1 eV for a single layer. These results are promising from the point of view of the versatility of this material for optoelectronic applications at the nanometer scale and compatible with Si and III-V technologies.
基金financially supported by the National Natural Science Foundation of China(21302142 and 51603151)the National Key Research and Development Program of China(2017YFA0103900 and 2017YFA0103904)+1 种基金the 1000 Youth Talent Planthe Fundamental Research Funds for the Central Universities of China
文摘Organic field-effect transistors(OFETs) offer great potential applications in chemical and biological sensing for homeland security,environmental monitoring,industry manufacturing,and medical/biological detection. Many studies concentrate on sensitivity and selectivity improvement of OFET-based sensors. We report four organic semiconductors with different alkyl side chain lengths but the same π-conjugated core structure for OFETs. Our work focuses on the molecular structure of organic semiconductors(OSCs). Alkyl side chains can hinder the diffusion of ammonia into the OSCs layer,which blocks the interaction between ammonia and conducting channel. The result also reveals the relationship between the alky chain and the film thickness in sensitivity control. These results are expected to be a guide to the molecular design of organic semiconductors and the choice of OSCs.
基金supported by the National Natural Science Foundation of China (21773244 and 21875248)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)the Natural Science Foundation of Fujian Province (2018J01025)
文摘Explorations of new second harmonic generation materials in Ag^+-Hg^2+/Bi^3+-selenites systems afforded three new silver selenium oxides, namely, Ag4 Hg(SeO3)2(SeO4)(1), Ag2Bi2(SeO3)3(SeO4)(2) and Ag5 Bi(SeO3)4(3). They exhibit flexible crystal chemistry. Compounds 1 and 2 are mixed valence selenium oxides containing Se(IV) and Se(VI) cations simultaneously. Compounds 1 and 3 exhibit a 3 D open framework with 4-, 6-and 8-member polyhedral ring tunnels along a, b and c axes. Compound 1 crystallized in a polar space group and could display a subtle frequency doubling efficiency about 35% of the commercial KH2PO4(KDP). UV-vis-NIR spectra reveal that compounds 1–3 are wide-band semiconductors with the optical bandgaps of 3.11, 3.65, 3.58 e V respectively. Theoretical calculations disclose that compounds2 and 3 are indirect band gap structures and their bandgaps are determined by Ag, Bi, Se and O atoms together.
基金supported by the National Basic Research Program of China(2013CB933501)the National Natural Science Foundation of China
文摘Organic semiconductors have gradually become the super stars on the stage of optoelectronic materials, due to their low cost, flexibility and solution processability. Numerous organic semiconductors, including small molecules and conjugated polymers, have been designed and synthesized to explore the potential of organic materials in optoelectronic industry. One-dimensional micro/nanostructures of organic semiconductors generally have more ordered packing structure with fewer defects compared with thin films, and are thus thought to show intrinsic carrier mobility of organic materials. Moreover, the packing structure in micro/nanostructures is clear and relatively easy to analyze, which makes these micro/nanostructures a good platform to study structure-property relationship. Therefore, design of suitable organic molecules to form micro-/nanostructures and methods to obtain ideal micro/nanostructures for functional devices will be fully discussed in this mini review. Finally, the perspective and opportunity of 1D micro/nanostructured organic materials based OFETs in the near future are also addressed.