This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete a...This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete and quantitative description of a compound cavity mode in its steady state. Additional information is provided about the physical inside into a compound laser system, such as a bifurcation diagram of the compound cavity modes for full variation range (from 0 to 1) of the external reflection coefficient and a more general shape for the diagram of photon density versus mode phase - this latter will reduce to the classical "ellipse" in the weak-feedback regime. It is shown that in the strong-feedback regime, a feedback laser is characterized by a small mode number and a high density of photons. This behavior confirms previous experimental observations, showing that beyond the coherence-collapse regime, the compound laser system could be re-stabilized, and that as a result power-enhanced low-noise stable laser operation with quasi-uniform pulsation is possible with external-mirror reflectivity close to 1. Moreover, it is also shown that for a compound system operating in the strong-feedback regime, an anti-reflection treatment of a laser can significantly reduce its current threshold, and that in the absence of this treatment excitation of a minimum-linewidth mode with higher output power would be possible inside such a system. Finally, it is shown that in the weak-feedback regime except for a phase shift the iterative travelling-wave model will reduce to the Lang-Kobayashi model in cases where the product of the feedback rate and the internal round-trip time is much less than unity (that would mean in situations of as-cleaved lasers).展开更多
In this article,we report the first experimental demonstration of an eight-wavelength λ/8 phased-shifted laser array based on the REC technique in the 1.3 μm wavelength domain.Measurement results exhibit good linear...In this article,we report the first experimental demonstration of an eight-wavelength λ/8 phased-shifted laser array based on the REC technique in the 1.3 μm wavelength domain.Measurement results exhibit good linearity of lasing wavelength with+/-0.35 nm wavelength residual.The SLM property was ensured with SMSRs all larger than 38 dB.Moreover,the directmodulation performance was also tested.The experimental results show that the modulation bandwidth can reach up to 13GHz even at the small injection current of 40 mA and the measured spurious-free dynamic range(SFDR)is up to 87 dB/Hz2/3,which shows good linearity.These measurements show that REC-based λ/8 phased-shifted laser array has good modulation performance and it may find potential application in actual fiber-optic systems.展开更多
By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A la...By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.展开更多
We present an innovative and practical scheme of building a miniaturized wavemeter, with the advantages of low cost, high reliability and simple structure. Through a calibration test by a 780 nm external cavity diode ...We present an innovative and practical scheme of building a miniaturized wavemeter, with the advantages of low cost, high reliability and simple structure. Through a calibration test by a 780 nm external cavity diode laser(ECDL), the results show that our system gets a wavelength resolution of better than 1 pm, measurement accuracy of better than 2 pm(corresponding to a frequency of 1 GHz), and a measurement range of 8.5 nm. Finally, the multi-mode comparison test between our system and a commercial spectrum analyzer further indicates the high-precision, miniaturization and low cost of the proposed system, which shows that it is particularly suitable for ECDL and atom cooling and trapping experiments. The system design, experimental results and conclusions are of definite significance as a fine reference for other ranges of wavelength.展开更多
文摘This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete and quantitative description of a compound cavity mode in its steady state. Additional information is provided about the physical inside into a compound laser system, such as a bifurcation diagram of the compound cavity modes for full variation range (from 0 to 1) of the external reflection coefficient and a more general shape for the diagram of photon density versus mode phase - this latter will reduce to the classical "ellipse" in the weak-feedback regime. It is shown that in the strong-feedback regime, a feedback laser is characterized by a small mode number and a high density of photons. This behavior confirms previous experimental observations, showing that beyond the coherence-collapse regime, the compound laser system could be re-stabilized, and that as a result power-enhanced low-noise stable laser operation with quasi-uniform pulsation is possible with external-mirror reflectivity close to 1. Moreover, it is also shown that for a compound system operating in the strong-feedback regime, an anti-reflection treatment of a laser can significantly reduce its current threshold, and that in the absence of this treatment excitation of a minimum-linewidth mode with higher output power would be possible inside such a system. Finally, it is shown that in the weak-feedback regime except for a phase shift the iterative travelling-wave model will reduce to the Lang-Kobayashi model in cases where the product of the feedback rate and the internal round-trip time is much less than unity (that would mean in situations of as-cleaved lasers).
基金supported by the National Natural Science Foundation of China(Grant No.61090392)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2011AA010300)the Key Programs of the Ministry of Education of China(Grant No.20100091110005)
文摘In this article,we report the first experimental demonstration of an eight-wavelength λ/8 phased-shifted laser array based on the REC technique in the 1.3 μm wavelength domain.Measurement results exhibit good linearity of lasing wavelength with+/-0.35 nm wavelength residual.The SLM property was ensured with SMSRs all larger than 38 dB.Moreover,the directmodulation performance was also tested.The experimental results show that the modulation bandwidth can reach up to 13GHz even at the small injection current of 40 mA and the measured spurious-free dynamic range(SFDR)is up to 87 dB/Hz2/3,which shows good linearity.These measurements show that REC-based λ/8 phased-shifted laser array has good modulation performance and it may find potential application in actual fiber-optic systems.
基金supported by the National Key Technology R&D Program of China(Nos.2013BAK06B04 and 2014BAD08B03)the National Natural Science Foundation of China(Nos.61307124 and 11404129)+3 种基金the Science and Technology Department of Jilin Province of China(Nos.20120707 and 20140307014SF)the Changchun Municipal Science and Technology Bureau(Nos.11GH01 and 14KG022)the State Key Laboratory on Integrated OptoelectronicsJilin University(No.IOSKL2012ZZ12)
文摘By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.
基金supported by the National Natural Science Foundation of China(No.51275523)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20134307110009)+1 种基金the Graduate Innovative Research Fund of Hunan Province(No.CX20158015)the Excellent Graduate Innovative Fund of NUDT(No.B150305)
文摘We present an innovative and practical scheme of building a miniaturized wavemeter, with the advantages of low cost, high reliability and simple structure. Through a calibration test by a 780 nm external cavity diode laser(ECDL), the results show that our system gets a wavelength resolution of better than 1 pm, measurement accuracy of better than 2 pm(corresponding to a frequency of 1 GHz), and a measurement range of 8.5 nm. Finally, the multi-mode comparison test between our system and a commercial spectrum analyzer further indicates the high-precision, miniaturization and low cost of the proposed system, which shows that it is particularly suitable for ECDL and atom cooling and trapping experiments. The system design, experimental results and conclusions are of definite significance as a fine reference for other ranges of wavelength.