Magnetism and the stability of (Ga 1-xFe x)As are investigated using the first principles LMTO-ASA band calculation by assuming supercell structures.Four concentrations of the 3d impurities are studied (x=1,1/2,1/...Magnetism and the stability of (Ga 1-xFe x)As are investigated using the first principles LMTO-ASA band calculation by assuming supercell structures.Four concentrations of the 3d impurities are studied (x=1,1/2,1/4,and 1/8).The results show the effect of varying Fe concentration on the magnetic and stable properties.展开更多
The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88...The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88Se0.12 solid solution single crystal has been grown using the Czochralski method. Monitoring of structure changes of the sample was carried out by electron microscope. The elemental composition of the studied alloy was obtained by energy dispersive spectrometry (EDS) analysis and empirical formula of the compound was established. X-ray diffraction analysis confirmed that the Bi2Te2.88Se0.12 sample was a single phase with rhombohedral structure. The behavior upon heating was studied using differential thermal analysis (DTA) technique. Changes in physical and chemical properties of materials were measured as a function of increasing temperature by thermogravimetric analysis (TGA). The lattice parameters values obtained by X-ray powder diffraction analyses of Bi2Te2.88Se0.12 are very similar to BizTe3 lattice constants, indicating that a small portion of tellurium is replaced with selenium. The obtained values for specific electrical and thermal conductivities are in correlation with available literature data. The Vickers microhardness values are in range between HV 187 and HV 39.02 and decrease with load increasing. It is shown that very complex process of infrared thermography can be applied for characterization of thermoelectric elements and modules.展开更多
The combined characterizations of mobility and phonon scattering spectra allow us to probe hole transport process in epitaxial PbSe crystalline films grown by molecular beam epitaxy (MBE). The measurements of Hall eff...The combined characterizations of mobility and phonon scattering spectra allow us to probe hole transport process in epitaxial PbSe crystalline films grown by molecular beam epitaxy (MBE). The measurements of Hall effect show p-type con- ductivity of PbSe epitaxial films. At 295 K, the PbSe samples display hole concentrations of (5~8)×1017 cm–3 with mobilities of about 300 cm2/(V·s), and at 77 K the hole mobility is as high as 3×103 cm2/(V·s). Five scattering mechanisms limiting hole mobilities are theoretically analyzed. The calculations and Raman scattering measurements show that, in the temperatures between 200 and 295 K, the scattering of polar optical phonon modes dominates the impact on the observed hole mobility in the epitaxial PbSe films. Raman spectra characterization observed strong optical phonon scatterings at high temperature in the PbSe epitaxial films, which is consistent with the result of the measured hole mobility.展开更多
We have investigated the doping behavior of rare earth element holmium (Ho3+) in ZnO semiconductor. The structural, microstructure, and magnetic properties of Zn1-xHoxO (x=0.0, 0.04, and 0.05) thin films deposite...We have investigated the doping behavior of rare earth element holmium (Ho3+) in ZnO semiconductor. The structural, microstructure, and magnetic properties of Zn1-xHoxO (x=0.0, 0.04, and 0.05) thin films deposited on Si(100) substrate by thermal evaporation technique were studied. The ceramic targets were prepared by conventional solid state ceramic technique. The pallets used as target were final sintered at 900℃ in the presence of N2 atmosphere. The experimental results of X-ray diffraction (XRD) spectra, surface morphology, and magnetic properties show that the Ho3+ doped ZnO thin films has a strong influence on the materials properties. The higher angle shift in peak position and most preferred (101) orientation were observed in XRD pattern. These spectra confirmed the substitution of Ho3+ in ZnO lattice. The surface morphology and stoichiometry for both bulk and thin films were analyzed by scanning electron microscopy and energy dispersive spectroscopy. It was observed that grain size decreases with the increase of Ho3+. Room temperature ferromagnetism was observed for Zn0.95Ho0.050 films. The ferromagnetism might be attributed to the substitution of Ho ions for Zn2+ in ZnO lattices.展开更多
Two inner salt carbocyanines were filmed chemically on the Si surface through Si-O-C bond. The structures were characterized by SERS and XPS. And the spectral response and surface photovoltage spectrum were measured. ...Two inner salt carbocyanines were filmed chemically on the Si surface through Si-O-C bond. The structures were characterized by SERS and XPS. And the spectral response and surface photovoltage spectrum were measured. These results show that the Si wafer can be sensitized by dyes, and the filmed Si wafers have photovoltage effect.展开更多
This paper focuses on the study of thermal performances of MOS (metal-oxide-semiconductor) transistors for uncooled infrared bolometer applications. Such devices can be used in various applications both military and...This paper focuses on the study of thermal performances of MOS (metal-oxide-semiconductor) transistors for uncooled infrared bolometer applications. Such devices can be used in various applications both military and civil, such as defence and security, medical applications, industrial surveillance, etc. Series of measurements were conducted to obtain TCC (temperature coefficient of current) versus gate voltage and temperature curves. The TCC is a figure of merit for a device used as the sensitive element in a bolometer that represents its sensitivity to temperature and as such is a good indicator of the detector attainable performance. The measurements were confronted to Atlas simulations, and showed that in the subthreshold region the TCC ranges from 4%/K all the way to 9%/K which represents a great improvement compared to state of the art thermistor bolometers. Analytic expressions of the TCC are also derived from current equations of the MOSFET (MOS field effect transistor) drain current to help understanding the effect of drain to source voltage, mobility, temperature and threshold voltage sensibility to temperature, in all three operation modes of the transistor (subthreshold, ohmic and saturation). It was also determined that gate length does not have an influence on the TCC until short channel effects are factored in.展开更多
Starch is one of the most promising natural polymers source However, the properties of starch-based materials are not satisfactory. because it is an adsorbent, universally available and low cost. This weakness can be ...Starch is one of the most promising natural polymers source However, the properties of starch-based materials are not satisfactory. because it is an adsorbent, universally available and low cost. This weakness can be overcome by adding other materials to form biocomposite. Biocomposite is a composite material of a natural polymer (organic phase) and reinforcement/filler (inorganic phase). The use of filler material that has the properties of semiconductor will produce composite that have semiconducting properties as well. In this research, biocomposite was cast using ZnO as filler in the matrix of sweet potato starch plasticised by glycerol. From the results of XRD (X-ray diffraction) and SEM (scanning electron microscope) analysis showed that ZnO has been dispersed in the matrix and the results of FT-IR was found that sweet potato starch, glycerol, and ZnO are united to form biocomposite. From the test results of mechanical, physical and electrical properties were found that the addition of ZnO concentration of 1%, 3% and 6% lead to improvement of tensile strength from 24.68 kgf/cm2 to 34.43 kgffcm2, decrease in elongation from 26.96% to 8.5%, decrease in water vapour transmission rate from 8.6270 gr·m^2·h^-1 to 4.581 gr·m^2·h^-1, increase in UV absorbance, and conductivity of 5.864 × 10^-7 S/cm. Addition of glycerol concentration of 15%, 25% and 35% wt causes an increase in elongation from 8.75% to 33.04%, and decrease in tensile strength from 54.57% to 14.64%.展开更多
A new type homogeneous planar PC (photoelectric converter) on the basis of multijunction semiconductor n+-p-p+-n+-p-p+-...-n+-p-p+ structure has been investigated. The entire structure is a cascade PC consisti...A new type homogeneous planar PC (photoelectric converter) on the basis of multijunction semiconductor n+-p-p+-n+-p-p+-...-n+-p-p+ structure has been investigated. The entire structure is a cascade PC consisting of a number of elements of the structure--single PCs connected in series and illuminated by light that has consistently passed through the previous semiconductor layers. The theory of converter of both monochromatic and solar radiation has been developed and the limiting values of their photoelectric and power characteristics have been determined, including the optimal thickness and number of single PCs layered on a base PC, their spectral sensitivity, current-voltage characteristics and efficiency. The open-circuit voltage grows practically linearly with the number of elements in the cascade. The top efficiency limit for a certain optimal elements number reaches its maximum that exceeds considerably that of the base PC, especially in the range of low collecting coefficient of charge carriers in the base PC.展开更多
SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with g...SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with good crystallization and big grain size. The conductivity of the films was measured by photoelectrochemical test. It is proved that the SnS:Ag films are p-type of semiconductor. Hall measurement shows that the carrier concentration of the films increases, while their resistivity decreases after Ag-doping.展开更多
Linearly bonded triiodide chains with fairly small distance between the adjacent iodine ions feature a facile electron transfer and highly anisotropic properties.Here,we demonstrate a novel strategy towards a new one-...Linearly bonded triiodide chains with fairly small distance between the adjacent iodine ions feature a facile electron transfer and highly anisotropic properties.Here,we demonstrate a novel strategy towards a new one-dimensional linear triiodide DMEDA·I6,using chain-type N,N'-dimethylethanediamine(DMEDA)cation to coordinate triiodine ions.This triiodide has the shortest distance between adjacent I3^- and good linearity.An estimated electronic band gap of1.36 e V indicates its semiconducting properties.100 fold differences both in polarization-sensitive absorption and effective mass were achieved by simulation,with directions parallel and perpendicular to the a-axis of DMEDA·I6.The DMEDA·I6 single crystal-based photodetectors show a good switching characteristic and a distinct polarization-sensitive photoresponse with linear dichroic photodetection ratio of about 1.9.Strongly anisotropic features and semiconducting properties of DMEDA·I6 make this triiodide system an interesting candidate for polarization related applications.展开更多
Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted drama...Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted dramatically increasing interest due to their unique physical,展开更多
This paper is concerned with the decay estimate of high-order energy for a class of special time-dependent structural damped systems represented by Fourier multipliers. This model is widely used in the fields of semic...This paper is concerned with the decay estimate of high-order energy for a class of special time-dependent structural damped systems represented by Fourier multipliers. This model is widely used in the fields of semiconductivity, superconductivity, electromagnetic waves, electrolyte and electrode materials, etc.展开更多
The conventional charge transport models based on density- and field-dependent mobility, only having a non-Arrhenius tem- perature dependence, cannot give good current-voltage characteristics of poly (2-methoxy-5-(2...The conventional charge transport models based on density- and field-dependent mobility, only having a non-Arrhenius tem- perature dependence, cannot give good current-voltage characteristics of poly (2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) hole-only devices. In this paper, we demonstrate that the current-voltage characteristics can give a good unified description of the temperature, carrier density mad electric field dependence of mobility based on both the Arrhenius temperature dependence and the non-Arrhenius temperature dependence. Fu^hermore, we perform a systematic study of charge transport and electrical properties for MEH-PPV. It is shown that the boundary carrier density has an important effect on the current-voltage characteristics. Too large or too small values of boundary carrier density will lead to incorrect cur- rent-voltage characteristics. The numerically calculated carrier density is a decreasing function of the distance to the interface, and the numerically calculated electric field is an increasing function of the distance. Both the maximum of carrier density and the minimum of electric field appear near the interface.展开更多
文摘Magnetism and the stability of (Ga 1-xFe x)As are investigated using the first principles LMTO-ASA band calculation by assuming supercell structures.Four concentrations of the 3d impurities are studied (x=1,1/2,1/4,and 1/8).The results show the effect of varying Fe concentration on the magnetic and stable properties.
基金"Development of ecological knowledge-based advanced materials and technologies for multifunctional application" (Grant No.TR34005)"New approach to designing materials for energy conversion and storage" (Grant No.OI172060)"0-3D nanostructures for application in electronics and renewable energy sources:synthesis,characterisation and processing" (Grant No.III45007)
文摘The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88Se0.12 solid solution single crystal has been grown using the Czochralski method. Monitoring of structure changes of the sample was carried out by electron microscope. The elemental composition of the studied alloy was obtained by energy dispersive spectrometry (EDS) analysis and empirical formula of the compound was established. X-ray diffraction analysis confirmed that the Bi2Te2.88Se0.12 sample was a single phase with rhombohedral structure. The behavior upon heating was studied using differential thermal analysis (DTA) technique. Changes in physical and chemical properties of materials were measured as a function of increasing temperature by thermogravimetric analysis (TGA). The lattice parameters values obtained by X-ray powder diffraction analyses of Bi2Te2.88Se0.12 are very similar to BizTe3 lattice constants, indicating that a small portion of tellurium is replaced with selenium. The obtained values for specific electrical and thermal conductivities are in correlation with available literature data. The Vickers microhardness values are in range between HV 187 and HV 39.02 and decrease with load increasing. It is shown that very complex process of infrared thermography can be applied for characterization of thermoelectric elements and modules.
基金Project (No. 10434090) supported by the National Natural ScienceFoundation of China
文摘The combined characterizations of mobility and phonon scattering spectra allow us to probe hole transport process in epitaxial PbSe crystalline films grown by molecular beam epitaxy (MBE). The measurements of Hall effect show p-type con- ductivity of PbSe epitaxial films. At 295 K, the PbSe samples display hole concentrations of (5~8)×1017 cm–3 with mobilities of about 300 cm2/(V·s), and at 77 K the hole mobility is as high as 3×103 cm2/(V·s). Five scattering mechanisms limiting hole mobilities are theoretically analyzed. The calculations and Raman scattering measurements show that, in the temperatures between 200 and 295 K, the scattering of polar optical phonon modes dominates the impact on the observed hole mobility in the epitaxial PbSe films. Raman spectra characterization observed strong optical phonon scatterings at high temperature in the PbSe epitaxial films, which is consistent with the result of the measured hole mobility.
文摘We have investigated the doping behavior of rare earth element holmium (Ho3+) in ZnO semiconductor. The structural, microstructure, and magnetic properties of Zn1-xHoxO (x=0.0, 0.04, and 0.05) thin films deposited on Si(100) substrate by thermal evaporation technique were studied. The ceramic targets were prepared by conventional solid state ceramic technique. The pallets used as target were final sintered at 900℃ in the presence of N2 atmosphere. The experimental results of X-ray diffraction (XRD) spectra, surface morphology, and magnetic properties show that the Ho3+ doped ZnO thin films has a strong influence on the materials properties. The higher angle shift in peak position and most preferred (101) orientation were observed in XRD pattern. These spectra confirmed the substitution of Ho3+ in ZnO lattice. The surface morphology and stoichiometry for both bulk and thin films were analyzed by scanning electron microscopy and energy dispersive spectroscopy. It was observed that grain size decreases with the increase of Ho3+. Room temperature ferromagnetism was observed for Zn0.95Ho0.050 films. The ferromagnetism might be attributed to the substitution of Ho ions for Zn2+ in ZnO lattices.
文摘Two inner salt carbocyanines were filmed chemically on the Si surface through Si-O-C bond. The structures were characterized by SERS and XPS. And the spectral response and surface photovoltage spectrum were measured. These results show that the Si wafer can be sensitized by dyes, and the filmed Si wafers have photovoltage effect.
文摘This paper focuses on the study of thermal performances of MOS (metal-oxide-semiconductor) transistors for uncooled infrared bolometer applications. Such devices can be used in various applications both military and civil, such as defence and security, medical applications, industrial surveillance, etc. Series of measurements were conducted to obtain TCC (temperature coefficient of current) versus gate voltage and temperature curves. The TCC is a figure of merit for a device used as the sensitive element in a bolometer that represents its sensitivity to temperature and as such is a good indicator of the detector attainable performance. The measurements were confronted to Atlas simulations, and showed that in the subthreshold region the TCC ranges from 4%/K all the way to 9%/K which represents a great improvement compared to state of the art thermistor bolometers. Analytic expressions of the TCC are also derived from current equations of the MOSFET (MOS field effect transistor) drain current to help understanding the effect of drain to source voltage, mobility, temperature and threshold voltage sensibility to temperature, in all three operation modes of the transistor (subthreshold, ohmic and saturation). It was also determined that gate length does not have an influence on the TCC until short channel effects are factored in.
文摘Starch is one of the most promising natural polymers source However, the properties of starch-based materials are not satisfactory. because it is an adsorbent, universally available and low cost. This weakness can be overcome by adding other materials to form biocomposite. Biocomposite is a composite material of a natural polymer (organic phase) and reinforcement/filler (inorganic phase). The use of filler material that has the properties of semiconductor will produce composite that have semiconducting properties as well. In this research, biocomposite was cast using ZnO as filler in the matrix of sweet potato starch plasticised by glycerol. From the results of XRD (X-ray diffraction) and SEM (scanning electron microscope) analysis showed that ZnO has been dispersed in the matrix and the results of FT-IR was found that sweet potato starch, glycerol, and ZnO are united to form biocomposite. From the test results of mechanical, physical and electrical properties were found that the addition of ZnO concentration of 1%, 3% and 6% lead to improvement of tensile strength from 24.68 kgf/cm2 to 34.43 kgffcm2, decrease in elongation from 26.96% to 8.5%, decrease in water vapour transmission rate from 8.6270 gr·m^2·h^-1 to 4.581 gr·m^2·h^-1, increase in UV absorbance, and conductivity of 5.864 × 10^-7 S/cm. Addition of glycerol concentration of 15%, 25% and 35% wt causes an increase in elongation from 8.75% to 33.04%, and decrease in tensile strength from 54.57% to 14.64%.
文摘A new type homogeneous planar PC (photoelectric converter) on the basis of multijunction semiconductor n+-p-p+-n+-p-p+-...-n+-p-p+ structure has been investigated. The entire structure is a cascade PC consisting of a number of elements of the structure--single PCs connected in series and illuminated by light that has consistently passed through the previous semiconductor layers. The theory of converter of both monochromatic and solar radiation has been developed and the limiting values of their photoelectric and power characteristics have been determined, including the optimal thickness and number of single PCs layered on a base PC, their spectral sensitivity, current-voltage characteristics and efficiency. The open-circuit voltage grows practically linearly with the number of elements in the cascade. The top efficiency limit for a certain optimal elements number reaches its maximum that exceeds considerably that of the base PC, especially in the range of low collecting coefficient of charge carriers in the base PC.
基金supported by the Depart ment of Science & Technology of Fujian Province(Nos.2008I0019,2006F5062,2006J0032)the Fuzhou University(Nos.K-081005,XRC-0736)~~
文摘SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with good crystallization and big grain size. The conductivity of the films was measured by photoelectrochemical test. It is proved that the SnS:Ag films are p-type of semiconductor. Hall measurement shows that the carrier concentration of the films increases, while their resistivity decreases after Ag-doping.
基金financially supported by the National Natural Science Foundation of China (51761145048, 61725401 and 61704097)the Innovation Fund of WNLO and the 62th China Postdoctoral Science Foundation (2017M622418)
文摘Linearly bonded triiodide chains with fairly small distance between the adjacent iodine ions feature a facile electron transfer and highly anisotropic properties.Here,we demonstrate a novel strategy towards a new one-dimensional linear triiodide DMEDA·I6,using chain-type N,N'-dimethylethanediamine(DMEDA)cation to coordinate triiodine ions.This triiodide has the shortest distance between adjacent I3^- and good linearity.An estimated electronic band gap of1.36 e V indicates its semiconducting properties.100 fold differences both in polarization-sensitive absorption and effective mass were achieved by simulation,with directions parallel and perpendicular to the a-axis of DMEDA·I6.The DMEDA·I6 single crystal-based photodetectors show a good switching characteristic and a distinct polarization-sensitive photoresponse with linear dichroic photodetection ratio of about 1.9.Strongly anisotropic features and semiconducting properties of DMEDA·I6 make this triiodide system an interesting candidate for polarization related applications.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB632900)National Natural Science Foundation of China(Grant Nos.61390502&21373068)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51521003)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS201607B)
文摘Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted dramatically increasing interest due to their unique physical,
基金supported by the National Natural Science Foundation of China (No.10871175)
文摘This paper is concerned with the decay estimate of high-order energy for a class of special time-dependent structural damped systems represented by Fourier multipliers. This model is widely used in the fields of semiconductivity, superconductivity, electromagnetic waves, electrolyte and electrode materials, etc.
基金supported by the National Basic Research Program of China (Grant No.2007CB310407)Foundation for Innovative Research Groups of the NSFC (Grant No.61021061)+1 种基金the National Natural Science Foundation of China (Grant Nos.50972023 and 61071028)the International S&T Cooperation Program of China (Grant No.2006DFA53410)
文摘The conventional charge transport models based on density- and field-dependent mobility, only having a non-Arrhenius tem- perature dependence, cannot give good current-voltage characteristics of poly (2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) hole-only devices. In this paper, we demonstrate that the current-voltage characteristics can give a good unified description of the temperature, carrier density mad electric field dependence of mobility based on both the Arrhenius temperature dependence and the non-Arrhenius temperature dependence. Fu^hermore, we perform a systematic study of charge transport and electrical properties for MEH-PPV. It is shown that the boundary carrier density has an important effect on the current-voltage characteristics. Too large or too small values of boundary carrier density will lead to incorrect cur- rent-voltage characteristics. The numerically calculated carrier density is a decreasing function of the distance to the interface, and the numerically calculated electric field is an increasing function of the distance. Both the maximum of carrier density and the minimum of electric field appear near the interface.