To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-...To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, and 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and earboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P 〈 0.5), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.展开更多
Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated...Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated to evaluate effects of land use conversion on soil organic carbon (SOC) and soil nutrients in the semi-arid region of the Loess Plateau of China.Total organic carbon (TOC),light fraction organic carbon (LFOC),heavy fraction organic carbon (HFOC),total N (TN),nitrate nitrogen (NO 3-N) and nitrite nitrogen (NO 2-N),ammonium nitrogen (NH + 4-N),total P,and available P (AP) were measured.The results showed that SOC in NG,ST and BT were 12.7%,27.7% and 34.8% higher than that of the cropland,respectively.LFOC,light fraction (LF) dry matter,ratio of TOC to TN (C/N) and the ratio of TOC to AP (C/P) were higher in the shrub land or native grassland than in the cropland.Cropland had the highest TN,the sum of NO 3-N and NO 2-N,TP and AP due to the use of chemical fertilizers.TOC significantly correlated with LFOC,HFOC and C/N.LFOC significantly correlated with dry matter of the LF and C/N.TN,the sum of NO 3-N and NO 2-N and AP were significantly negatively correlated with TOC and LFOC.Therefore,land use conversion from cropland to shrub land,or maybe grassland,contributed to SOC sequestration and improved soil nutrients stabilization.展开更多
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were eva...The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.展开更多
Enhanced observational meteorological elements,energy fluxes,and the concentration of dust aerosols collected from the Semi-Arid Climate Observatory and Laboratory(SACOL) during a typical dust storm period in March 20...Enhanced observational meteorological elements,energy fluxes,and the concentration of dust aerosols collected from the Semi-Arid Climate Observatory and Laboratory(SACOL) during a typical dust storm period in March 2010 at Lanzhou were used in this paper to investigate the impact of dust aerosols on near surface atmospheric variables and energy budgets.The results show that the entire dust storm event was associated with high wind velocities and decreasing air pressure,and the air changed from cold and wet to warm and dry and then recovered to its initial state.The response of energy fluxes occurred behind meteorological elements.At high dust concentration periods,the net radiation was significantly less in the daytime and higher at night,while the heat fluxes displayed the same trend,indicating the weakening of the land-atmosphere energy exchange.The results can be used to provide verification for numerical model results in semi-arid areas.展开更多
Aims Accurate prediction of spatiotemporal variations in carbon and water fluxes of heterogeneous landscape is critical to comprehensively address the effects of climate change and vegetation dynamics on landscape and...Aims Accurate prediction of spatiotemporal variations in carbon and water fluxes of heterogeneous landscape is critical to comprehensively address the effects of climate change and vegetation dynamics on landscape and regional carbon and water cycling.Methods A field study was conducted to characterize the seasonal variations in gas fluxes and explore their relationships with abiotic and biotic factors in a small grassland landscape.Daytime carbon and water fluxes including net ecosystem exchange,gross ecosystem productivity,ecosystem respiration and evapotranspiration(ET)were measured for three types of grassland patches over a growing season using the closed chamber method.The key plant trait variables were measured,based on which community weighted mean(CWM)and functional variance(FDvar)were calculated.Important Findings The results showed that the temporal variations in the carbon and water fluxes were regulated by meteorological,soil and community functional variables.Inclusion of the CWM and FDvar of plant trait measures greatly improved the degree of explanation of the predict models.Specific leaf area and leafδ^(13)C content(Lδ^(13)C)were the most important trait variables in affecting the variations of the gas fluxes.CWMs indices had greater importance than FDvar indices in predicting the variation of the C fluxes but FDvar indices were more important for ET than C fluxes.Our findings demonstrated that mass ratio hypothesis and the complementary effects hypothesis are not mutually exclusive but have different relative importance for different ecosystem processes.Community functional traits played important roles in predicting the spatiotemporal variations of carbon and water fluxes in semiarid grassland.展开更多
基金Project supported by the National Key Basic Research Program (973 Program) of China (No. 2007CB106804)the PhD candidate Training Program (No. 20060730027)+1 种基金the "111" Project from the State Administration of Foreign Experts Affairs (SAFEA)the Ministry of Education of China
文摘To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, and 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and earboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P 〈 0.5), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.
基金Project supported by the National Basic Research Program (973 Program) of China (No. 2007CB106804)the International S&T Cooperation Program (ISTCP) of China (No. 2006DFA31070)the International Foundation for Sciences(No. C/3313-2)
文摘Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated to evaluate effects of land use conversion on soil organic carbon (SOC) and soil nutrients in the semi-arid region of the Loess Plateau of China.Total organic carbon (TOC),light fraction organic carbon (LFOC),heavy fraction organic carbon (HFOC),total N (TN),nitrate nitrogen (NO 3-N) and nitrite nitrogen (NO 2-N),ammonium nitrogen (NH + 4-N),total P,and available P (AP) were measured.The results showed that SOC in NG,ST and BT were 12.7%,27.7% and 34.8% higher than that of the cropland,respectively.LFOC,light fraction (LF) dry matter,ratio of TOC to TN (C/N) and the ratio of TOC to AP (C/P) were higher in the shrub land or native grassland than in the cropland.Cropland had the highest TN,the sum of NO 3-N and NO 2-N,TP and AP due to the use of chemical fertilizers.TOC significantly correlated with LFOC,HFOC and C/N.LFOC significantly correlated with dry matter of the LF and C/N.TN,the sum of NO 3-N and NO 2-N and AP were significantly negatively correlated with TOC and LFOC.Therefore,land use conversion from cropland to shrub land,or maybe grassland,contributed to SOC sequestration and improved soil nutrients stabilization.
基金Supported by the National Natural Science Foundation of China (Nos.50639070-4 and 30671666)the National Major Program on Pollution Control and Management of Water Body (No.2008ZX07104-003-03)
文摘The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q11-03)the National Natural Science Foundation of China(Grant Nos.40975049 and 40810059003)
文摘Enhanced observational meteorological elements,energy fluxes,and the concentration of dust aerosols collected from the Semi-Arid Climate Observatory and Laboratory(SACOL) during a typical dust storm period in March 2010 at Lanzhou were used in this paper to investigate the impact of dust aerosols on near surface atmospheric variables and energy budgets.The results show that the entire dust storm event was associated with high wind velocities and decreasing air pressure,and the air changed from cold and wet to warm and dry and then recovered to its initial state.The response of energy fluxes occurred behind meteorological elements.At high dust concentration periods,the net radiation was significantly less in the daytime and higher at night,while the heat fluxes displayed the same trend,indicating the weakening of the land-atmosphere energy exchange.The results can be used to provide verification for numerical model results in semi-arid areas.
基金supported by the National Key Research and Development Program of China(no.2016YFC0501602)International Partnership Program(no.121311KYSB20170004)of Chinese Academy of Sciences.
文摘Aims Accurate prediction of spatiotemporal variations in carbon and water fluxes of heterogeneous landscape is critical to comprehensively address the effects of climate change and vegetation dynamics on landscape and regional carbon and water cycling.Methods A field study was conducted to characterize the seasonal variations in gas fluxes and explore their relationships with abiotic and biotic factors in a small grassland landscape.Daytime carbon and water fluxes including net ecosystem exchange,gross ecosystem productivity,ecosystem respiration and evapotranspiration(ET)were measured for three types of grassland patches over a growing season using the closed chamber method.The key plant trait variables were measured,based on which community weighted mean(CWM)and functional variance(FDvar)were calculated.Important Findings The results showed that the temporal variations in the carbon and water fluxes were regulated by meteorological,soil and community functional variables.Inclusion of the CWM and FDvar of plant trait measures greatly improved the degree of explanation of the predict models.Specific leaf area and leafδ^(13)C content(Lδ^(13)C)were the most important trait variables in affecting the variations of the gas fluxes.CWMs indices had greater importance than FDvar indices in predicting the variation of the C fluxes but FDvar indices were more important for ET than C fluxes.Our findings demonstrated that mass ratio hypothesis and the complementary effects hypothesis are not mutually exclusive but have different relative importance for different ecosystem processes.Community functional traits played important roles in predicting the spatiotemporal variations of carbon and water fluxes in semiarid grassland.