The drag coefficient (Ca) and heat transfer coefficient (Ch) with the bulk transfer scheme are usually used to calculate the momentum and heat fluxes in meteorological models. The aerodynamic roughness length (z0...The drag coefficient (Ca) and heat transfer coefficient (Ch) with the bulk transfer scheme are usually used to calculate the momentum and heat fluxes in meteorological models. The aerodynamic roughness length (z0m) and thermal roughness length (z0h) are two crucial parameters for bulk transfer equations. To improve the meteorological models, the seasonal and interannual variations of Z0m, Z0h, coefficient kB-1, Cd, and Ch were investigated based on eddy covariance data over different grazed semiarid grasslands of Inner Mongolia during the growing seasons (May to September) from 2005 to 2008. For an ungrazed Leymus chinensis grassland (ungrazed since 1979), Z0m and z0h had significant seasonal and in- terannual variations. Zorn was affected by the amount and distribution of rainfall, kB 1 exhibited a relatively negative variation compared with z0h, which indicates that the seasonal variation of z0h cannot be described by kB 1. To parameterize Zorn and z0h, the linear regressions between ln(z0m), ln(z0h), and the leaf area index (LAI) were performed with R2=0.71 and 0.83. The monthly average kB-1 was found to decrease linearly with LAI. The four-year averaged values of Ca and Ch were 4.5 × 10^-3 and 3.9× 10^-3, respectively. The monthly average Cd only varied by 8% while the variation of Ch was 18%, which reflects the dif- ferent impacts of dead vegetation on momentum and heat transfer at this natural grassland. Moreover, with the removal of vegetation cover, grazing intensities reduced Z0m, Z0h, Cd, and Ch.展开更多
Controlled grazing is considered a good management strategy to maintain or increase the live weight of livestock and to reduce vegetation degradation of rangelands. The present study investigated soil characteristics,...Controlled grazing is considered a good management strategy to maintain or increase the live weight of livestock and to reduce vegetation degradation of rangelands. The present study investigated soil characteristics, aboveground vegetation biomass dynamics and controlled grazinginduced changes in the live weight of local ewes in the semi-arid rangeland of Ahmadun, Ziarat, Balochistanprovince of Pakistan. An area of 115 ha was protected from livestock grazing in April 2014. In June 2015, soil characteristics within 0-30 cm depth i.e. soil organic matter(SOM), mineral nitrogen, p H and texture in controlled and uncontrolled grazing sites were assessed. Aboveground vegetation biomass measured in early(June) and late summer(August) in 2015 and 2016. The nutritional value i.e. crude protein, phosphorus(P), neutral detergent fiber(NDF), acid detergent fiber(ADF), calcium(Ca), magnesium(Mg) and potassium(K) of dominantplant species were assessed at the beginning of experiment in 2015. Vegetation cover of controlled and uncontrolled grazing sites was also measured during the two years of the study period using the Veg Measure software. From June to November in2015 and 2016, controlled and uncontrolled livestock grazing sites were grazed on a daily basis by local ewes with a stocking rate of 2 and 1 head ha^(-1) respectively. Results reveal that the organic matter contents of coarse-textured, slightly alkaline soil of the study site were in the range of 9.4-17.6 g kg^(-1) soil and showed a strong positive correlation with aboveground vegetation biomass. The biomass of plants was 56.5% and 33% greater at controlled than uncontrolled grazing site in 2015 and 2016 respectively and plant cover was also higher at controlled than uncontrolled grazing site in both years The nutrient contents were significantly(P<0.05)lower in grasses than shrubs. In both years, the controlled grazing increased the weight gain of ewes about two folds compared to the uncontrolled grazing.The results indicate that controlled grazing improved the vegetation biomass production and small ruminant productivity.展开更多
基金supported by the German Science Foundation (DFG) within the Research Group 536"MAGIM" (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate) under Grant BE 172/7-1 in cooperation with Inner Mongolia Grassland Ecosystem Research Stationthe National Basic Research Program of China (973 Program) under Grant 2010CB951801the Strategic Priority Research Program of Chinese Academy of Sciences under Grant XDA05110102
文摘The drag coefficient (Ca) and heat transfer coefficient (Ch) with the bulk transfer scheme are usually used to calculate the momentum and heat fluxes in meteorological models. The aerodynamic roughness length (z0m) and thermal roughness length (z0h) are two crucial parameters for bulk transfer equations. To improve the meteorological models, the seasonal and interannual variations of Z0m, Z0h, coefficient kB-1, Cd, and Ch were investigated based on eddy covariance data over different grazed semiarid grasslands of Inner Mongolia during the growing seasons (May to September) from 2005 to 2008. For an ungrazed Leymus chinensis grassland (ungrazed since 1979), Z0m and z0h had significant seasonal and in- terannual variations. Zorn was affected by the amount and distribution of rainfall, kB 1 exhibited a relatively negative variation compared with z0h, which indicates that the seasonal variation of z0h cannot be described by kB 1. To parameterize Zorn and z0h, the linear regressions between ln(z0m), ln(z0h), and the leaf area index (LAI) were performed with R2=0.71 and 0.83. The monthly average kB-1 was found to decrease linearly with LAI. The four-year averaged values of Ca and Ch were 4.5 × 10^-3 and 3.9× 10^-3, respectively. The monthly average Cd only varied by 8% while the variation of Ch was 18%, which reflects the dif- ferent impacts of dead vegetation on momentum and heat transfer at this natural grassland. Moreover, with the removal of vegetation cover, grazing intensities reduced Z0m, Z0h, Cd, and Ch.
基金supported by the USAID under Agriculture Innovation Program (AIP) Pakistansupported by the ICARDA and the CGIAR Research Program on Livestock (CRP Livestock)
文摘Controlled grazing is considered a good management strategy to maintain or increase the live weight of livestock and to reduce vegetation degradation of rangelands. The present study investigated soil characteristics, aboveground vegetation biomass dynamics and controlled grazinginduced changes in the live weight of local ewes in the semi-arid rangeland of Ahmadun, Ziarat, Balochistanprovince of Pakistan. An area of 115 ha was protected from livestock grazing in April 2014. In June 2015, soil characteristics within 0-30 cm depth i.e. soil organic matter(SOM), mineral nitrogen, p H and texture in controlled and uncontrolled grazing sites were assessed. Aboveground vegetation biomass measured in early(June) and late summer(August) in 2015 and 2016. The nutritional value i.e. crude protein, phosphorus(P), neutral detergent fiber(NDF), acid detergent fiber(ADF), calcium(Ca), magnesium(Mg) and potassium(K) of dominantplant species were assessed at the beginning of experiment in 2015. Vegetation cover of controlled and uncontrolled grazing sites was also measured during the two years of the study period using the Veg Measure software. From June to November in2015 and 2016, controlled and uncontrolled livestock grazing sites were grazed on a daily basis by local ewes with a stocking rate of 2 and 1 head ha^(-1) respectively. Results reveal that the organic matter contents of coarse-textured, slightly alkaline soil of the study site were in the range of 9.4-17.6 g kg^(-1) soil and showed a strong positive correlation with aboveground vegetation biomass. The biomass of plants was 56.5% and 33% greater at controlled than uncontrolled grazing site in 2015 and 2016 respectively and plant cover was also higher at controlled than uncontrolled grazing site in both years The nutrient contents were significantly(P<0.05)lower in grasses than shrubs. In both years, the controlled grazing increased the weight gain of ewes about two folds compared to the uncontrolled grazing.The results indicate that controlled grazing improved the vegetation biomass production and small ruminant productivity.