By using four-year CloudSat/CALIPSO satellite data,the authors investigated cloud microphysical properties in three representative regions over East Asia,where models commonly suffer from great biases in simulations o...By using four-year CloudSat/CALIPSO satellite data,the authors investigated cloud microphysical properties in three representative regions over East Asia,where models commonly suffer from great biases in simulations of cloud radiative effects.This study aims to provide an observational basis of cloud microphysical properties for the modeling community,against which the model simulations can be validated.The analyzed cloud microphysical properties include mass,number concentration,and effective radius for both liquid and ice phases.For liquid clouds,both cloud mass and number concentration gradually decrease with height,leading to the effective radius being nearly uniformly spread in the range of 8-14μm.For ice clouds,the cloud mass and effective radius decrease with height,whereas the number concentration is nearly uniform in the vertical.The cloud microphysical properties show remarkable differences among different cloud types.Cloud mass and number concentration are larger in cumuliform clouds,whereas smaller in cirrus clouds.By comparing cloud properties among the Tibetan Plateau,East China,and the western North Pacific,results show the values are overall smaller for liquid clouds but larger for ice clouds over the Tibetan Plateau.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA20060501]the National Basic Research Program of China[grant numbers 2017YFA0604000 and 2016YFB0200800]the National Natural Science Foundation of China[grant number 41530426]。
文摘By using four-year CloudSat/CALIPSO satellite data,the authors investigated cloud microphysical properties in three representative regions over East Asia,where models commonly suffer from great biases in simulations of cloud radiative effects.This study aims to provide an observational basis of cloud microphysical properties for the modeling community,against which the model simulations can be validated.The analyzed cloud microphysical properties include mass,number concentration,and effective radius for both liquid and ice phases.For liquid clouds,both cloud mass and number concentration gradually decrease with height,leading to the effective radius being nearly uniformly spread in the range of 8-14μm.For ice clouds,the cloud mass and effective radius decrease with height,whereas the number concentration is nearly uniform in the vertical.The cloud microphysical properties show remarkable differences among different cloud types.Cloud mass and number concentration are larger in cumuliform clouds,whereas smaller in cirrus clouds.By comparing cloud properties among the Tibetan Plateau,East China,and the western North Pacific,results show the values are overall smaller for liquid clouds but larger for ice clouds over the Tibetan Plateau.