By means of the theory on the semi-global C^1 solution to the mixed initialboundary value problem (IBVP) for first order quasilinear hyperbolic systems, we establish the exact controllability for general nonautonomo...By means of the theory on the semi-global C^1 solution to the mixed initialboundary value problem (IBVP) for first order quasilinear hyperbolic systems, we establish the exact controllability for general nonautonomous first order quasilinear hyperbolic systems with general nonlinear boundary conditions.展开更多
This paper concerns the global existence of solutions to the semi-linear wave equation utt-△u = G(u) in five space dimensions, where G(u) -|u|p with p > 3+17^(1/17). We used the classical iteration method and tech...This paper concerns the global existence of solutions to the semi-linear wave equation utt-△u = G(u) in five space dimensions, where G(u) -|u|p with p > 3+17^(1/17). We used the classical iteration method and technique estimates to show that a classical global solution exists for the radially symmetric equations with small and compact supported initial data.展开更多
基金Project supported by Specialized Research Fund for the Doctoral Program of Higher Education.
文摘By means of the theory on the semi-global C^1 solution to the mixed initialboundary value problem (IBVP) for first order quasilinear hyperbolic systems, we establish the exact controllability for general nonautonomous first order quasilinear hyperbolic systems with general nonlinear boundary conditions.
文摘This paper concerns the global existence of solutions to the semi-linear wave equation utt-△u = G(u) in five space dimensions, where G(u) -|u|p with p > 3+17^(1/17). We used the classical iteration method and technique estimates to show that a classical global solution exists for the radially symmetric equations with small and compact supported initial data.