采用频率测量实现目标定位具有成本低、可靠性高的特点,仅利用到达频率差(frequency difference of arrival,FDOA)测量,提出了一种静态目标位置的精确定位方法。针对所建立的频率测量方程的高度非线性这一问题,通过引入辅助变量,将其转...采用频率测量实现目标定位具有成本低、可靠性高的特点,仅利用到达频率差(frequency difference of arrival,FDOA)测量,提出了一种静态目标位置的精确定位方法。针对所建立的频率测量方程的高度非线性这一问题,通过引入辅助变量,将其转化为矩阵形式的伪线性方程;然后利用半正定松弛(semi-definite relaxation,SDR)方法将非凸的加权最小二乘(weighted least square,WLS)问题松弛为半正定规划(semidefinite programming,SDP)问题,从而进一步精确估计未知变量;最后对所提出方法的均方根误差(rootmean-square error,RMSE)进行了分析,以验证其性能。仿真结果表明,在较低的高斯噪声水平下,所采用的半正定松弛方法的性能能够达到克拉美罗下界(Cramer-Rao lower bound,CRLB),且该算法对几何形状具有较高的鲁棒性;此外,在使用较少数量的传感器时,其RMSE性能要优于两阶段加权最小二乘(two-stage weighted least square,TSWLS)法。展开更多
文摘采用频率测量实现目标定位具有成本低、可靠性高的特点,仅利用到达频率差(frequency difference of arrival,FDOA)测量,提出了一种静态目标位置的精确定位方法。针对所建立的频率测量方程的高度非线性这一问题,通过引入辅助变量,将其转化为矩阵形式的伪线性方程;然后利用半正定松弛(semi-definite relaxation,SDR)方法将非凸的加权最小二乘(weighted least square,WLS)问题松弛为半正定规划(semidefinite programming,SDP)问题,从而进一步精确估计未知变量;最后对所提出方法的均方根误差(rootmean-square error,RMSE)进行了分析,以验证其性能。仿真结果表明,在较低的高斯噪声水平下,所采用的半正定松弛方法的性能能够达到克拉美罗下界(Cramer-Rao lower bound,CRLB),且该算法对几何形状具有较高的鲁棒性;此外,在使用较少数量的传感器时,其RMSE性能要优于两阶段加权最小二乘(two-stage weighted least square,TSWLS)法。