In the present, the authors investigate a new type of separation axioms, which they call it w s-regular. The authors obtained some of its basic properties and its characterizations. Also, the authors notice that the a...In the present, the authors investigate a new type of separation axioms, which they call it w s-regular. The authors obtained some of its basic properties and its characterizations. Also, the authors notice that the axiom of tO s-regularity is weaker than the regularity, stronger than s-regularity and it is independent of w -regularity. However, the authors showed that the w s-regularity and regularity are identical on the class of all locally countable spaces, while the concepts ofw s-regularity and s-regularity are same on the class of anti-locally countable spaces:; furthermore, they proved that the three concepts w s-regularity, s-regularity and w s-regularity are same on the class of extremally disconnected spaces. The authors characterized w s-regular Trspaces by g-open sets, and they proved that the w s-regularity is an open hereditary property and it is also a topologizal property. The w s-closure of subsets of topological spaces are investigated and characterized. The authors used the concepts w s-closure to obtain some characterizations of the w s-regular spaces. Behind those, the authors obtained some properties and characterizations of w -semi open sets.展开更多
Motivated by a paper of Fang (2009), we study the Samuel multiplicity and the structure of essentially semi-regular operators on an infinite-dimensional complex Banach space. First, we generalize Fang's results co...Motivated by a paper of Fang (2009), we study the Samuel multiplicity and the structure of essentially semi-regular operators on an infinite-dimensional complex Banach space. First, we generalize Fang's results concerning Samuel multiplicity from semi-Fredholm operators to essentially semi-regular operators by elementary methods in operator theory. Second, we study the structure of essentially semi-regular operators. More precisely, we present a revised version of Fang's 4 × 4 upper triangular model with a little modification, and prove it in detail after providing numerous preliminary results, some of which are inspired by Fang's paper. At last, as some applications, we get the structure of semi-Fredholm operators which revised Fang's 4 × 4 upper triangular model, from a different viewpoint, and characterize a semi-regular point λ∈ C in an essentially semi-regular domain.展开更多
文摘In the present, the authors investigate a new type of separation axioms, which they call it w s-regular. The authors obtained some of its basic properties and its characterizations. Also, the authors notice that the axiom of tO s-regularity is weaker than the regularity, stronger than s-regularity and it is independent of w -regularity. However, the authors showed that the w s-regularity and regularity are identical on the class of all locally countable spaces, while the concepts ofw s-regularity and s-regularity are same on the class of anti-locally countable spaces:; furthermore, they proved that the three concepts w s-regularity, s-regularity and w s-regularity are same on the class of extremally disconnected spaces. The authors characterized w s-regular Trspaces by g-open sets, and they proved that the w s-regularity is an open hereditary property and it is also a topologizal property. The w s-closure of subsets of topological spaces are investigated and characterized. The authors used the concepts w s-closure to obtain some characterizations of the w s-regular spaces. Behind those, the authors obtained some properties and characterizations of w -semi open sets.
基金supported by National Natural Science Foundation of China (Grant No.11171066)Specialized Research Fund for the Doctoral Program of Higher Education (Grant Nos. 2010350311001 and 20113503120003)+1 种基金Natural Science Foundation of Fujian Province (Grant Nos. 2011J05002 and 2012J05003)Foundation of the Education Department of Fujian Province (Grant No. JB10042)
文摘Motivated by a paper of Fang (2009), we study the Samuel multiplicity and the structure of essentially semi-regular operators on an infinite-dimensional complex Banach space. First, we generalize Fang's results concerning Samuel multiplicity from semi-Fredholm operators to essentially semi-regular operators by elementary methods in operator theory. Second, we study the structure of essentially semi-regular operators. More precisely, we present a revised version of Fang's 4 × 4 upper triangular model with a little modification, and prove it in detail after providing numerous preliminary results, some of which are inspired by Fang's paper. At last, as some applications, we get the structure of semi-Fredholm operators which revised Fang's 4 × 4 upper triangular model, from a different viewpoint, and characterize a semi-regular point λ∈ C in an essentially semi-regular domain.