Finding solutions of matrix equations in given set SR n×n is an active research field. Lots of investigation have done for these cases, where S are the sets of general or symmetric matrices and symmetric posit...Finding solutions of matrix equations in given set SR n×n is an active research field. Lots of investigation have done for these cases, where S are the sets of general or symmetric matrices and symmetric positive definite or sysmmetric semiposite definite matrices respectively . Recently, however, attentions are been paying to the situation for S to be the set of general(semi) positive definite matrices(called as semipositive subdefinite matrices below) . In this paper the necessary and sufficient conditions for the following two kinds of matrix equations having semipositive, subdefinite solutions are obtained. General solutions and symmetric solutions of the equations (Ⅰ) and (Ⅱ) have been considered in in detail.展开更多
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
We prove the existence of a positive solution to the problem-Δu=a(x)f(u), x∈Ω, u(x)=0,x∈Ω,where Ω is a bounded domain in R n with smooth boundary, a(x) is allowed to change sign.
In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection be...In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection between the strong P-congruences and the P-kernel normal systems. Finally, it is also prove that the lattice of strong P-congruences and the lattice of P-kernel normal systems on S(P) are isomorphic.展开更多
In this paper, the authors study the existence of positive solution of the following BVP {1/p(t)(P(t)x′)′+f(t,x(t),p(t)x′(t))=0,o〈t〈+∞ αx(0)-βlimt→0p(t)x′(t)=0,γ limt→+∞x(t)+δl...In this paper, the authors study the existence of positive solution of the following BVP {1/p(t)(P(t)x′)′+f(t,x(t),p(t)x′(t))=0,o〈t〈+∞ αx(0)-βlimt→0p(t)x′(t)=0,γ limt→+∞x(t)+δlimt→+∞p(t)x′(t)=0 on the semi-infinite interval. By considering characterization of the nonlinearity, they obtain some new existence results.展开更多
In this paper, we studied the combined effect of concave and convex nonlinearities on the number of positive solutions for a semilinear elliptic system. We prove the existence of at least four positive solutions for a...In this paper, we studied the combined effect of concave and convex nonlinearities on the number of positive solutions for a semilinear elliptic system. We prove the existence of at least four positive solutions for a semilinear elliptic system involving concave and convex nonlinearities by using the Nehari manifold and the center mass function.展开更多
This paper deals with a problem proposed by H. Brezis on the existence of positive solutionsto the equation An + u(rt+2)/(n--2) + f(x,u) = 0 under the Neumann boundaly collditionD.u = un/(rt--z), where f(x, u) is a lo...This paper deals with a problem proposed by H. Brezis on the existence of positive solutionsto the equation An + u(rt+2)/(n--2) + f(x,u) = 0 under the Neumann boundaly collditionD.u = un/(rt--z), where f(x, u) is a lower order perturbation of u(n+2)/(n--2) at infinity.展开更多
In this paper an existence theorem of positive radial solutions to a class of semilinear elliptic systems is proved by the Leray-Schauder degree theorem. Also, a nonexistence theorem is obtained. As an application of ...In this paper an existence theorem of positive radial solutions to a class of semilinear elliptic systems is proved by the Leray-Schauder degree theorem. Also, a nonexistence theorem is obtained. As an application of the main theorem, an example is given.展开更多
In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iter...In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iterative methods are presented to compute the smallest and the quasi largest positive definite solutions,and the convergence analysis is also given.The theoretical results are illustrated by numerical examples.展开更多
This paper considers the following Cauchy problem for semilinear wave equations in n space dimensionswhere A is the wave operator, F is quadratic in (?) with (?) = ( ).The minimal value of s is determined such that th...This paper considers the following Cauchy problem for semilinear wave equations in n space dimensionswhere A is the wave operator, F is quadratic in (?) with (?) = ( ).The minimal value of s is determined such that the above Cauchy problem is locally well-posed in H8. It turns out that for the general equation s must satisfyThis is due to Ponce and Sideris (when n = 3) and Tataru (when n≥5). The purpose of this paper is to supplement with a proof in the case n = 2,4.展开更多
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove ...We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove that the positive solutions of (0.1) are super polyharmonic, i.e.,where x* = (x1,... ,Xn-1, --Xn) is the reflection of the point x about the plane Rn-1. Then, we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of (0.3), in which α can be any real number between 0 and n. By some Pohozaev type identities in integral forms, we prove a Liouville type theorem--the non-existence of positive solutions for (0.1).展开更多
文摘Finding solutions of matrix equations in given set SR n×n is an active research field. Lots of investigation have done for these cases, where S are the sets of general or symmetric matrices and symmetric positive definite or sysmmetric semiposite definite matrices respectively . Recently, however, attentions are been paying to the situation for S to be the set of general(semi) positive definite matrices(called as semipositive subdefinite matrices below) . In this paper the necessary and sufficient conditions for the following two kinds of matrix equations having semipositive, subdefinite solutions are obtained. General solutions and symmetric solutions of the equations (Ⅰ) and (Ⅱ) have been considered in in detail.
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
文摘We prove the existence of a positive solution to the problem-Δu=a(x)f(u), x∈Ω, u(x)=0,x∈Ω,where Ω is a bounded domain in R n with smooth boundary, a(x) is allowed to change sign.
基金the Science Research Foundation of Qingdao Technological University(C2002-214)
文摘In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection between the strong P-congruences and the P-kernel normal systems. Finally, it is also prove that the lattice of strong P-congruences and the lattice of P-kernel normal systems on S(P) are isomorphic.
基金Supported by the Natural Scientific Fund of Zhejiang Province(Y604127)Supported by the Educational Scientific Fund of Zhejiang Province(20030594)
文摘In this paper, the authors study the existence of positive solution of the following BVP {1/p(t)(P(t)x′)′+f(t,x(t),p(t)x′(t))=0,o〈t〈+∞ αx(0)-βlimt→0p(t)x′(t)=0,γ limt→+∞x(t)+δlimt→+∞p(t)x′(t)=0 on the semi-infinite interval. By considering characterization of the nonlinearity, they obtain some new existence results.
文摘In this paper, we studied the combined effect of concave and convex nonlinearities on the number of positive solutions for a semilinear elliptic system. We prove the existence of at least four positive solutions for a semilinear elliptic system involving concave and convex nonlinearities by using the Nehari manifold and the center mass function.
文摘This paper deals with a problem proposed by H. Brezis on the existence of positive solutionsto the equation An + u(rt+2)/(n--2) + f(x,u) = 0 under the Neumann boundaly collditionD.u = un/(rt--z), where f(x, u) is a lower order perturbation of u(n+2)/(n--2) at infinity.
基金This research is supported by the National Natural Science Foundation of China (No.10371116 and 10101024).
文摘In this paper an existence theorem of positive radial solutions to a class of semilinear elliptic systems is proved by the Leray-Schauder degree theorem. Also, a nonexistence theorem is obtained. As an application of the main theorem, an example is given.
基金Foundation item: the Natural Science Foundation of Hunan Province (No. 09JJ6012).
文摘In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iterative methods are presented to compute the smallest and the quasi largest positive definite solutions,and the convergence analysis is also given.The theoretical results are illustrated by numerical examples.
基金Project supported by the 973 Project of the National Natural Science Foundation of China,the Key Teachers Program and the Doctoral Program Foundation ofthe Miistry of Education of China.
文摘This paper considers the following Cauchy problem for semilinear wave equations in n space dimensionswhere A is the wave operator, F is quadratic in (?) with (?) = ( ).The minimal value of s is determined such that the above Cauchy problem is locally well-posed in H8. It turns out that for the general equation s must satisfyThis is due to Ponce and Sideris (when n = 3) and Tataru (when n≥5). The purpose of this paper is to supplement with a proof in the case n = 2,4.
文摘We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove that the positive solutions of (0.1) are super polyharmonic, i.e.,where x* = (x1,... ,Xn-1, --Xn) is the reflection of the point x about the plane Rn-1. Then, we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of (0.3), in which α can be any real number between 0 and n. By some Pohozaev type identities in integral forms, we prove a Liouville type theorem--the non-existence of positive solutions for (0.1).