Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall...Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.展开更多
This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical c...This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical cyclones (TCs) formed over the SCS during central Pacific warming years and less TC frequency during central Pacific cooling years. How different environmental factors (including low-level relative vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for central Pacific warming and cooling years separately, which could account for the changes of TC frequency over the SCS in different ENSO Modoki phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results suggest that the vertical wind shear and low-level relative vorticity, which are associated with the ENSO Modold-induced anomalous circulations in Matsuno-Gill patterns, make the largest contributions to the ENSO Modoki modulation of tropical cyclogenesis over the SCS as implied by the GP index. These results highlight the important roles of dynamic factors in the modulation of TC fre-quency over the SCS by the ENSO Modold during the boreal summer.展开更多
基金National Key Fundamental Project for Research Development and Plan (2004CB418301)Natural Science Foundation of China (40575018, 40675033)
文摘Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences with Grant No.XDA11010000the National Natural Science Foundation of China (No.41205026)+6 种基金the National Basic Research Program of China (2011CB403500)the Innovation Group Program of State Key Laboratory of Tropical Oceanography (LTOZZ1201)Dr.Lei Wang was also sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences (SQ201208)the foundation for returned scholars of Ministry of Education of Chinathe specialized research fund for the doctoral program of Higher Education for Youthsthe foundation of Guangdong Educational Committee for Youths (2012 LYM_0008)the open fund of the Key Laboratory of Ocean Circulation and Waves of Chinese Academy of Sciences (KLOCAW1309)
文摘This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical cyclones (TCs) formed over the SCS during central Pacific warming years and less TC frequency during central Pacific cooling years. How different environmental factors (including low-level relative vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for central Pacific warming and cooling years separately, which could account for the changes of TC frequency over the SCS in different ENSO Modoki phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results suggest that the vertical wind shear and low-level relative vorticity, which are associated with the ENSO Modold-induced anomalous circulations in Matsuno-Gill patterns, make the largest contributions to the ENSO Modoki modulation of tropical cyclogenesis over the SCS as implied by the GP index. These results highlight the important roles of dynamic factors in the modulation of TC fre-quency over the SCS by the ENSO Modold during the boreal summer.